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1 Introduction 

Hyper is a general-purpose object oriented interpreted scripting language with an emphasis on 

technical computation. Hyper combines powerful object-oriented programming (OOP) with an 

easy to use interpretive environment.  Hyper can be used in two different modes: interactive and 

batch script.  In the interactive mode, the user can type a command or a statement in a console 

and get the output immediately.  In the batch script mode, the user can write a script and run the 

script by typing the name of the script file in the consol. The interactive mode has some shell-

like commands (similar to Linux/Unix/DOS) which provide utility functions.  The syntax of 

Hyper is similar to the syntax of Java, with some exceptions.  In addition to the scripting, 

programs can also be written in Java, compiled and imported into the Hyper’s interpretive 

environment.  The imported classes in the compiled java binary can be accessed as easily as 

accessing the classes written in Hyper scripting language.  In fact, any pre-compiled java classes 

can be accessed this way, including all the public classes in the Java API.  Hyper is fully 

integrated with the java APIs. 

Hyper is a full fledge object oriented language. The object-oriented features such as 

encapsulation, inheritance, and polymorphism are implemented using classes and objects.  It 

features try catch and finally.  It also features strong typing with default parameter values and 

multiple parameters return from a function call. Hyper supports a rich set of data types related to 

mathematics and other technical computation, such as Complex, Matrix, Polynomial and 

several others, in addition to the data types found in a typical programming language.  Hyper 

features a large library of functions, such as Linear Algebra, Probability and Statistics, in 

addition to the basic math functions. 

This document is a reference manual for the Hyper language.  It’s not intended to be a tutorial.  

A separate tutorial will be produced at a later time.  Section 2 and 3 describes shell commands 

and utility functions.  Section 4 describes the syntax of Hyper language.  Section 5 describes the 

class libraries.  Appendices A-G provides detail documentations of the function call signatures of 

the class libraries.  

2 Interactive Commands 

The following commands can be used in the interactive mode: 

Command Argument Description 
cd  <path> Changes default directory 

Path can be specified in the similar fashion as in DOS or Unix. 

“..” implies path for the directory above the current directory.  



clear  <filter> Clears variable(s) from the workspace 

Filter can be keywords, “all”, “var”, “fcn”, “lib”, and “screen” or partial 

variable name with single (?) or multiple (*) wild cards. 

“all” implies everything in the workspace. 

“var” implies only variables. 

“fcn” implies functions. 

“lib” implies imported Java library. 

“screen” implies the console output screen. 

ls  <filter> Prints in a table format the list of the files in the current working directory. 

Filter can be partial file name with single (?) or multiple (*) wild cards used in 

a similar fashion to DOS or Unix. 

If no filter is used, the entire list will be printed. 

lsd  <filter> 

<sort key> 
Prints in a detailed format the list of the files in the current working directory. 

Detailed format consists of 4 columns: Name, Type, Size, and Date Modified. 

Filter usage is the same as in “ls” command. 

An optional second argument can be used as a sort key. An optional Plus(“+”) 

or minus (“-”) character can be used before the sort key to sort in ascending or 

descending order.  The default sort order is ascending.  The following sort keys 

can be used: “name”, “type”, “size”, and “date”. The default sort key is 

“name”. 

pwd  none Print the working directory 

ws  <filter> Prints in a table format the list of variables in the current workspace. 

Filter can be keywords, “all”, “var”, “fcn” and “lib” or partial variable name 

with single (?) or multiple (*) wild cards. 

“all” implies everything in the workspace. 

“var” implies only variables. 

“fcn” implies only functions. 

“lib” implies only imported Java library. 

If no filter is used, only the variables will be printed. 

(Same as using the “var” filter) 

wsd <filter> Prints in a detailed format the list of variables in the current workspace.  



Detailed format consists of 2 columns: Name and Type. 

Filter usage is the same as in “ws” command. 

wsv <filter> Prints in a detailed format the list of variables in the current workspace. 

Detailed format consists of 3 columns: Name and Type, and Value. 

Filter usage is the same as in “ws” command. 

 

Text between the angle brackets (<>) are provided by the user.  Although these commands 

cannot be accessed from the script, but there are equivalent functions that can be called from the 

script to obtain similar results.  These functions are called Utility functions.  For example, to 

change directory in the interactive mode, the user can type the following command: 

cd ..\abc 

But when writing a script, the user needs to call the following function: 

changedir(“..\abc”); 

More details of the Utility functions are described in the next section. 

3 Utility Functions 

Utility functions for Hyper are listed alphabetically in the table below: 

Call Signature Description 
Return 

Type 

changedir(<path>) Changes the working directory according to <path> void 

clearws(<var list>) Clears the variables in the <var list> from the work space. void 

exec(<Script name>) Executes the named script.  void 

getworkingdir() Returns the path of the current working directory. string 

listdir(<filter>) Returns a filtered list of the files in the current working 

directory. 

list 

maxdigits(<arg>) Sets the maximum number of digits after the decimal point 

corresponding to the absolute value of the parameter <arg>.  

<arg> can be a long value, or a double value.  If double value 

used, the fractional part is ignored. 

If no argument or more than 1 argument used, the current 

maximum number of digits is displayed. 

integer 

notation(<arg>) Sets the output notation in one of the following formats: 

REGULAR, SCIENTIFIC, or ENGINEERING. The output 

format can be specified by using the parameter <arg>. <arg> 

can be a string, an integer value, or a real value. “regular”, reg”, 

1, 1.0 corresponds to the notation REGULAR. “scientific”, 

“sci”, 2, 2.0 corresponds to the notation SCIENTIFIC. “regular”, 

string 



reg”, 1, 1.0 corresponds to the notation REGULAR. 

“engineering”, “eng”, 3, 3.0 corresponds to the notation 

ENGINEERING.  String arguments are case insensitive.  

If no argument or more than 1 argument used, the current 

notation is displayed. 

print(<arg>) Prints the argument. The argument can be a string or a variable. void 

 

4 Syntax 
 

4.1 Lexical Conventions 

 

4.1.1 Comments: 

Comments : "//"   

Two forward slashes used to comment out the texts after the double slashes in a given line.  This 

is similar to the comments used in Java and C++ languages. 

Example: 

// This is a comment. 

 

4.1.2 Reserved Words: 

RESERVED WORDS: 

“break” 

"catch" 

"class" 

“default” 

"else" 

"finally" 

"for" 

"function" 

"if" 

"import" 

"in" 

“loop” 

“switch” 

"return" 



"throw" 

"try" 

"while" 

 

4.1.3 Literals: 

4.1.3.1 Decimal Literal: 

DECIMAL_LITERAL: ["1"-"9"] (["0"-"9"])*  

HEX_LITERAL: "0" ["x","X"] (["0"-"9","a"-"f","A"-"F"])+ 

OCTAL_LITERAL: "0" (["0"-"7"])* 

FLOATING_POINT_LITERAL: 

        (["0"-"9"])+ "." (["0"-"9"])* (<EXPONENT>)? 

      | "." (["0"-"9"])+ (<EXPONENT>)? 

      | (["0"-"9"])+ <EXPONENT> 

EXPONENT: ["e","E"] (["+","-"])? (["0"-"9"])+ 

Example: 

-1.602E-19  

 

4.1.3.2 Character Literal: 

CHARACTER_LITERAL: 

      "'" 

      (   (~["'","\\","\n","\r"]) 

        | ("\\" 

            ( ["n","t","b","r","f","v","\\","'","\""] 

            | ["0"-"7"] ( ["0"-"7"] )? 

            | ["x","X"] ["0"-"9","a"-"f","A"-"F"] (["0"-"9","a"-"f","A"-"F"])? 

            ) 

          ) 

      ) 

      "'" 

 

Examples: 



‘c’ 

‘5’ 

 

4.1.3.3 String Literal: 

STRING_LITERAL: 

      "\"" 

      (   (~["\"","\\","\n","\r"]) 

        | ("\\" 

            ( ["n","t","b","r","f","v","\\","'","\""] 

            | ["0"-"7"] ( ["0"-"7"] )? 

            | ["x","X"] ["0"-"9","a"-"f","A"-"F"] (["0"-"9","a"-"f","A"-"F"])? 

            ) 

          ) 

      )* 

      "\"" 

 

Example: 

 
“This is a String” 

“This is a String with a carriage return \n” 

“This is a String with a back slash \\” 

 

 

4.1.4 Identifier: 

IDENTIFIER: <LETTER> (<LETTER>|["0"-"9"])* 

 

Example: 

 
Abc_123 

 

 

LETTER: ["_","a"-"z","A"-"Z"] 

 

DIGIT: ["0"-"9"] > 

 

Separators:  [",", ";", "(" ,  ")",  "{", "}", "[", "]", ".", "::",] 

 



4.1.5 Operators: 

Operators: 

Symbol Operation 
"=" Assignment 

">" Greater than 

"<" Less than 

"!" Not 

"==" Equal 

"<=" Less than or equal 

">=" Greater than or equal 

"!=" Not equal 

"||" Or 

"&&" And 

"+" Plus 

"-" Minus 

"*" Multiply 

"/" Divide 

"^" Exponent 

"%" Remainder 

":" Range 

 

4.2 Data Types 

Hyper supports the following data types: 

o Boolean  

o Character  

o String 

o Numeric 

▪ Integer 

▪ Real 

▪ Imaginary  

▪ Complex 

▪ Quaternion 

▪ Polynomial 

▪ Rational 

▪ Range 

▪ Vector 

• Real Vector 

• Complex Vector 

• Quaternion Vector 

• Polynomial Vector 

• Rational Vector 



▪ Matrix 

• Real Matrix 

• Complex Matrix 

• Quaternion Matrix 

• Polynomial Matrix 

• Rational Matrix 

o Array  

o Table 

o Class 

 

Variables representing the data types have attributes that can be used to obtain various properties 

of a variable.  All data types share some common attributes, and some data types have special 

attributes.  These attributes can be accessed using dot notation as below: 

<another var> = <var>.<attribute>; 

or 

<another var> = <var>.<attribute>(<param_1>,  …, <param_n”); 

 

The common attributes are given in the table below: 

Call Signature Description 
Return 

Type 

type Returns the name of the type of the variable. string 

isA(type) Returns TRUE if the parameter type is the type of the variable, and 

returns FALSE otherwise. 
boolean 

 

 

4.2.1 Boolean 

boolean: “True” | “False” 

A variable, <var>, can be defined as boolean by following ways: 

<var> = boolean(); 

or  

<var> = <boolean value>; 

 

Examples: 

b = boolean(1); -> b = true. 



b = boolean(0); -> b = false. 

b = True; 

b = false; 

 

4.2.2 Character 

 

Character:  CHARACTER_LITERAL 

A variable, <var>, can be defined as character by following ways: 

 

<var> = char(“<value”); 

or  

<var> = ‘<value>’; 

 

Examples: 

c = char(“a”); 

c = ‘a’; 

c = ‘5’; 

 

4.2.3 String 

 

String: STRING_LITERAL 

A variable, <var>, can be defined as String by following ways: 

<var> = String(<value>); 

or 

<var> = “<Value>”; 
 

Examples: 

str = String(“This is a String”); 

str = “This is a String”; 

 

Attributes for String type are given in the table below: 

Call Signature Description 
Return 

Type 

length Returns the length. integer 

index Returns the index of a character. integer 



rindex Returns the right index of a character. integer 

substring Returns a sub string. string 

toLowerCase Returns the same string with all lower-case characters.  string 

toUpperCase Returns the same string with all upper-case characters.  string 

startsWith Tests if this string starts with the specified prefix. boolean 

endsWith Tests if this string ends with the specified suffix. boolean 

split Returns a list with elements obtained from splitting the string. arrayList 

 

4.2.4 Integer 

The integer data type is a 32-bit signed two's complement integer, which has a minimum value 

of -231 and a maximum value of 231-1. 

integer :  DECIMAL_LITERAL 

A variable, <var>, can be defined as long by following ways: 

<var> = integer(<value>); 

or 

<var> = <integer value>; 
 

Examples: 

i = integer(3.2); -> i = 3. 
i = 10;  

 

4.2.5 Real 

 The real data type is a double-precision 64-bit IEEE 754 floating point. 

real :  FLOATING_POINT_LITERAL 

A variable, <var>, can be defined as double by following ways: 

<var> = real(<value>);  

or 

<var> = <real value>; 

 

Examples: 

r = real(2); -> r = 2.0. 

r = 3.14; 

r = 9.11E-31; 

 



4.2.6 Imaginary 

A variable, <var>,  can be defined as imaginary by following ways: 

<var> = imaginary(<value>); 

or  

<var> = <value>i; 
 

<value> can be either integer or double; 

 

Examples: 

imag = imaginary(2.5); -> imag = 2.5i 

or  

imag = imaginary(2); -> imag = 2.0i 

or 

imag = 2.5i; 

or  

imag = 2i; -> imag = 2.0i 

 

 

4.2.7 Complex 

A variable, <var>, can be defined as complex by following ways: 

<var> = complex(<value>,<value>) 

or  

<var>  = <value> ± <value>i; 
 

<value> can be either integer or double; 

 

Examples: 

com = complex(2.5, -3); -> com = 2.5 - 3.0i 

or  

com = 2.5 + 3i; -> com = 2.5 + 3.0i 

 

 

Attributes for Complex type are given in the table below: 



Call Signature Description 
Return 

Type 

real Returns the real part. real 

imaginary Returns the imaginary part. real 

magnitude Returns the magnitude. real 

angle Returns the phase angle. real 

conjugate Returns the complex conjugate.  complex 

 

4.2.8 Quaternion 

A variable, <var>, can be defined as quaternion by following ways: 

<var> = quaternion(<value>,< value >,< value >,< value >) 

or  

<var> = <value> ± <value>i ± <value>j ± <value>k; 

or  

<var> = <value>i ± <value>j ± <value>k; 

or  

<var> = <value> ± <value>i ± <value>j; 

or  

<var> = <value> ± <value>i ± <value>k; 

or  

<var> = <value> ± <value>j ± <value>k; 

or  

<var> = <value> ± <value>j; 

or  

<var> = <value> ± <value>k; 

or  

<var> = <value>i ± <value>j; 

or  

<var> = <value>i ± <value>k; 

or  

<var> = <value>j ± <value>k; 

 

<value> can be either integer or double; 

 



Examples: 

quat = quaternion (2.5, -3, 4, -1.2); -> quat = 2.5 - 3.0i + 4j -1.2k. 

or  

quat = 2.5 - 3.0i + 4j -1.2k; 

 

Some components may be skipped as shown below:  

quat = -3.0i + 4j -1.2k; -> quat = 0.0 - 3.0i + 4.0j -1.2k. 

 

quat = 2.5 - 3.0i + 4j; -> quat = 2.5 - 3.0i + 4.0j + 0.0k. 

 

quat = 2.5 - 3.0i + -1.2k; -> quat = 2.5 - 3.0i + 0.0j -1.2k. 

 

quat = 2.5 + 4j -1.2k; -> quat = 2.5 + 0.0i + 4.0j -1.2k. 

 

quat = 2.5 + 4j; -> quat = 2.5 + 0.0i + 4.0j + 0.0k. 

 

quat = 2.5 -1.2k; -> quat = 2.5 + 0.0i + 0.0j -1.2k. 

 

quat = -3.0i + 4j; -> quat = 0.0 - 3.0i + 4.0j + 0.0k. 

 

quat = -3.0i -1.2k; -> quat = 0.0 - 3.0i + 0.0j -1.2k. 

 

quat = 4j -1.2k; -> quat = 0.0 + 0.0i + 4.0j -1.2k. 

 

 

Attributes for Quaternion type are given in the table below: 

Call Signature Description 
Return 

Type 

scalar Returns the scalar part. real 

vector Returns the vector part. realVector 

i Returns the i component of the vector part. real 

j Returns the j component of the vector part. real 

k Returns the k component of the vector part. real 

norm Returns the norm. real 

unit Returns the unit quaternion. quaternion 

conjugate Returns the complex conjugate.  quaternion 

reciprocal  Returns the reciprocal quaternion. quaternion 

 

4.2.9 Polynomial 

The type Polynomial represents a mathematical polynomial.  A variable, <var>, can be defined 

as polynomial by following ways: 



<var> = polynomial(<coefficient>,<coefficient>, … ,<coefficient>) 

or  

<var> = #<coefficient>, <coefficient>, … , <coefficient>#; 
 

<coefficient> can be either long or double, but the coefficients of the polynomial are always 

double; 

 

Examples: 

A polynomial can be created using a constructor: 

poly = polynomial(1.5, 2,1e-3) 

 

will result in: 𝑝𝑜𝑙𝑦 = 1.5𝑥2 + 2𝑥 + 0.003 

or using the polynomial operator, “#”. 

poly = #1.5, 2, 1e-3#; 

 

will result in:  𝑝𝑜𝑙𝑦 = 1.5𝑥2 + 2𝑥 + 0.003 

or  

poly = #1.5, 2, 1e-3, 4.5#; 

 

will result in:  𝑝𝑜𝑙𝑦 = 1.5𝑥3 + 2𝑥2 + 0.003𝑥 + 4.5 

 

Attributes for Polynomial type are given in the table below: 

Call Signature Description 
Return 

Type 

degree Returns the degree of the polynomial. integer 

eval(integer x) Returns the value of the polynomial for the parameter x. real 

eval(real x) Returns the value of the polynomial for the parameter x. real 

eval(imaginary x) Returns the value of the polynomial for the parameter x. complex 

coefficients Returns all the coefficients. realVector 

coefficient(integer n) Returns coefficient corresponding to the power n. real 

coefficient(real n) Returns coefficient corresponding to the power n. real 

 



4.2.10  Rational 

The type Rational represents a ratio of two polynomials.  A variable, <var>, can be defined as 

rational using a constructor: 

<var> = rational(<polynomial_value>, <polynomial_value>) 

 

or using division operator, “/”. 

<var> = <polynomial_value>/<polynomial_value>; 
 

Examples: 

poly1 = #1, 2, 3#; 

poly2 = #4, 5, 6, 7#; 

rat = polynomial(poly1,poly2); 

 

will result in: 𝑟𝑎𝑡 =
𝑥2+2𝑥+3

4𝑥3+5𝑥2+6𝑥+7
 

The same result can be achieved by 

rat = poly1/poly2; 

 

Attributes for Rational type are given in the table below:  

Call Signature Description 
Return 

Type 

num Returns the numerator. polynomial 

den Returns the denominator. polynomial 

eval(integer x) Returns the value of the polynomial for the parameter x. real 

eval(real x) Returns the value of the polynomial for the parameter x. real 

eval(imaginary x) Returns the value of the polynomial for the parameter x. complex 

 

4.2.11 Range 

The type range represents a sequence of equally spaced integers.  A variable, <var>, can be 

defined as a range by following ways: 

<var> = range(<first>, <last>, <increment>); 

or 

<var> = range(<first>, <last>); 

In this method, the increment is assumed to be 1. 



or 

<var> = range(<last>) 

In this method, the first value of the sequence is assumed to be 0, and the increment is assumed 

to be 1. 

Example 1: 

rng = range(10, 30, 5); 

The statement above will produce the following sequence: 

10, 15, 20, 25, 30 

Example 2: 

rng = range(10, 15); 

The statement above will produce the following sequence: 

10, 11, 12, 13, 14, 15 

Example 3: 

rng = range(5); 

The statement above will produce the following sequence: 

0, 1, 2, 3, 4, 5 

 

Attributes for Quaternion type are given in the table below: 

Call Signature Description 
Return 

Type 

length Returns the length of the range. integer 

first Returns the first element of the range. integer 

last Returns the last element of the range. integer 

incr Returns the increment value. integer 

 

 



4.2.12   Vector 

The type Vector represents a mathematical vector, as defined in Linear Algebra.  There are five 

subtypes of Vector: Real Vector, Complex Vector, Quaternion Vector, Polynomial Vector, and 

Rational Vector.   

 

Common attributes for all Vector type are given in the table below: 

Call Signature Description 
Return 

Type 

length Returns the length of the vector. integer 

transpose Returns the transpose of the vector. matrix 

 

4.2.12.1   Real Vector 

The elements of a Real Vector are of type double.  

A variable, <var>, can be defined as a vector by two different methods: 

First method: 

<var> = [<element>, <element>, … , <element>]; 
 

Example: 

vec = [1.5, 2, 1e-3]; 

 

 

<element> can be either integer or real, but the vector elements are always real. 

 

 

Second Method: 

<var> = realVector(<element>,<element>, … ,<element>) 

 

Example: 

vec = realVector(1.5, 2, … ,1e-3) 

 

Both methods will produce the following vector: 



𝑣𝑒𝑐 = [
1.5
2.0
0.003

] 

 

 

Attributes for Vector type are given in the table below: 

Call Signature Description Return Type 

norm Returns the norm of the vector. real 

 

4.2.12.2   Complex Vector 

The elements of a Complex Vector are of type complex. A variable, <var>, can be defined as a 

complex vector by three different methods: 

First Method: 

<var> = [<element>, <element>, … , <element>]; 
 

If at least one <element> is of type Complex or Imaginary and all other <element>s are of type 

Integer or Real, a Complex Vector will be produced using the parameters.  Elements of type Real 

are converted to complex numbers with zero imaginary parts, and elements of type Imaginary are 

converted to complex numbers with zero real parts. 

 

Example: 

vec = [1.5 + 3i, 2 + 4.5i, 1e-3 + 1e-2i]; 

 

Second method: 

<var> = complexVector(<element>, <element>, … , <element>) 

 

If at least one parameter is of type Complex or Imaginary and all other parameters are of type 

Integer or Real, a Complex Vector will be produced using the parameters.  The <element>s are 

of type complex. Elements of type Real are converted to complex numbers with zero imaginary 

parts and elements of type Imaginary are converted to  complex numbers with zero real parts. 

 

Third method: 



<var> = complexVector(<element1>,<element2>) 

 

If <element1>,<element2> are vector of real values and have equal lengths, a Complex Vector 

will be produced whose from the <element1> and <element2>.  <element1> will provide the 

real components and the <element2> will provide the imaginary components.   

Attributes for Complex Vector type are given in the table below: 

Call Signature Description Return Type 

real Returns the real part. realVector 

imaginary Returns the imaginary part. realVector 

magnitude Returns the magnitude. realVector 

angle Returns the phase angle. realVector 

conjugate Returns the complex conjugate.  complexVector 

 

4.2.12.3   Quaternion Vector 

The elements of a Quaternion Vector are of type quaternion. A variable, <var>, can be defined 

as a quaternion vector by three different methods: 

First Method: 

<var> = [<element>, <element>, … , <element>]; 
 

If at least one <element> is of type Quaternion and rests of the <element>s are of type Long, 

Double, Imaginary, or Complex, a Quaternion Vector will be produced using the parameters.  

Elements of type other than Quaternion are converted to Quaternion. 

 

Example: 

vec = [1.5 + 3i + 2j + 1k, 2 + 4.5i + 1e-3j + 1e-2k]; 

 

Second method: 

<var> = quaternion_realVector(<element>, <element>, … , <element>) 

 

If at least one parameter is of type Quaternion and rests of the parameters are of type Long, 

Double, Imaginary, or Complex, a Quaternion Vector will be produced using the parameters.    

Elements of type other than Quaternion are converted to Quaternion. 



 

Third method: 

<var> = quaternionVector(<element1>,<element2>,<element3>,<element4>) 

 

If <element1>,<element2>,<element3>,<element4> are vectors of real values and equal 

lengths, a Quaternion Vector will be produced from the <element1>, <element2>, 

<element3>, and <element4>.  <element1> will provide the scalar components and the 

<element2>, <element3>, and <element4> will provide the vector components.   

Attributes for Quaternion Vector type are given in the table below: 

Call Signature Description Return Type 

scalar Returns the scalar part. realVector 

i Returns the i component of the vector part. realVector 

j Returns the j component of the vector part. realVector 

k Returns the k component of the vector part. realVector 

norm Returns the norm. realVector 

unit Returns the unit quaternion. quaternionVector 

conjugate Returns the complex conjugate.  quaternionMatrix 

reciprocal  Returns the reciprocal quaternion. quaternionVector 

 

4.2.12.4   Polynomial Vector 

The elements of a Polynomial Vector are of type polynomial. A variable, <var>, can be defined 

as a polynomial vector by two different methods: 

First Method: 

<var> = [<element>, <element>, … , <element>]; 
 

If all the <element>s are of type polynomial, a polynomial vector will be created. 

 

Example: 

vec = [#1,2,3# , #4,5,6#]; 

 

Second method: 

<var> = polynomialVector(<element>, <element>, … , <element>) 



 

If all the parameters are of type Polynomial, a Polynomial Vector will be produced using the 

parameters. 

Attributes for Polynomial Vector type are given in the table below: 

Call Signature Description Return Type 

degree Returns the degree of the polynomial. realVector 

eval(integer x) Returns the value of the polynomial for the parameter x. realVector 

eval(real x) Returns the value of the polynomial for the parameter x. realVector 

eval(imaginary x) Returns the value of the polynomial for the parameter x. complexVector 

 

4.2.12.5   Rational Vector 

The elements of a Rational Vector are of type rational. A variable, var, can be defined as a 

polynomial vector by two different methods: 

First Method: 

<var> = [<element>, <element>, … , <element>]; 
 

The <element>s are of type rational. 

Example: 

vec = [#1,2,3# / #4,5,6#, #11,12,13# / #14,15,16#]; 

 

Second method: 

<var> = rationalVector(<element>, <element>, … , <element>) 

 

If all the parameters are of type Rational, a Rational Vector will be produced using the 

parameters. 

 

Attributes for Rational Vector type are given in the table below:  

Call Signature Description Return Type 

num Returns the numerator. polynomialVector 



den Returns the denominator. polynomialVector 

eval(integer x) Returns the value of the polynomial for the parameter 

x. 
realVector 

eval(real x) Returns the value of the polynomial for the parameter 

x. 
realVector 

eval(imaginary x) Returns the value of the polynomial for the parameter 

x. 
complexVector 

 

4.2.13   Matrix 

The type Matrix represents a mathematical matrix, as defined in Linear Algebra.  There are five 

subtypes of Matrix: Real Matrix, Complex Matrix, Quaternion Matrix, Polynomial Matrix, and 

Rational Matrix.  

Accessing matrix elements:  

The element at row i and column j of the matrix can be accessed by following way: 

mat[i,j]; 

 

Contiguous elements from row r1 to r2 and from column c1 to c2 can be accessed by following 

way: 

mat[r1:r2, c1:c2] 

 

Common attributes for all Matrix type are given in the table below: 

Call Signature Description 
Return 

Type 

rows Returns the number of rows of the matrix. integer 

columns Returns the number of columns of the matrix. integer 

transpose Returns the transpose of the vector. Matrix 

isSquare Returns TRUE if the matrix is square, and returns FALSE otherwise. boolean 

isSymmetric Returns TRUE if the matrix is symmetric, and returns FALSE otherwise. boolean 

 

4.2.13.1   Real Matrix 

The elements of a Real Matrix are of type Real.  A variable, <var>, can be defined as Real 

Matrix by three different methods. 



First method: 

<var> = | <element>, <element>, … , <element> |, 

       | <element>, <element>, … , <element> |, 

 
                        . 
                         . 
                         . 
 

       | <element>, <element>, … , <element> |, (3) 

 

<element>s can be of type either Integer or Real, but the matrix elements types are always Real. 

Example: 

The matrix from the second method can be created by the following way: 

mat = |1.5,  4.7, 7.3 |, 

      |2.0,  5.0, 8.22|, 

      |1e-3, 6.0, 9.0 |; 

 

Will result in the following the matrix: 

𝑚𝑎𝑡 = [
1.5 4.7 7.3
2.0 5.0 8.22
0.003 6.0 9.0

] 

 

Second Method: 

<var> = realMatrix(<numRow>,<numColumn> 
<element>,<element>, … ,<element>) (1) 

 

<numRow> and <numColumn> are number or rows and the number columns in the matrix. The 

total number of elements (TNOE) equals to <numRow> times < numColumn>. 

If there are no other parameters, all the elements in the matrix will be initialized to zeros. If a 

third parameter, <element>,  of type Integer or Real is provided, all the elements in the matrix 

will be initialized to the value of the third parameter.  If more than one <element> are provided, 

these <element>s will be used in an attempt to fill the matrix.  If the number of <element>s 

(NOE) is equal to TNOE, the matrix will be filled exactly.  If NOE is less than TNOE, the rest of 

the elements will be set to zero.  If the NOE is greater than TNOE, the excess  <element>s will 

be ignored. 

 

Example: 



mat = realMatrix(2, 3, 1, 2.0, 3.5, 4, 5, 6) 

 

Will result in the following matrix: 

𝑚𝑎𝑡 = [
1.0 2.0 3.5
4.0 5.0 6.0

] 

Third Method: 

<var> = realMatrix(<realVector_value>,< realVector _value> 
, … ,< realVector _value>) (2) 

 

<realVector_value>s are of type Vector.  All <realVector_value>s must have the same 

length.  Vectors are represented as columns of the matrix.  Any number of 

<realVector_value>s can be provided. 

Example: 

Vec1 = realVector(1.5, 2, … ,1e-3) 

Vec2 = [4.7, 5, 6]; 

Vec3 = [7.3, 8.22, 9.0]; 

mat = realMatrix(vec1, vec2, vec3) 

 

Will result in the following the matrix: 

𝑚𝑎𝑡 = [
1.5 4.7 7.3
2.0 5.0 8.22
0.003 6.0 9.0

] 

 

Accessing matrix elements:  

Examples: 

mat[2,3] -> 8.22 

 

mat[2:3, 2:3] -> [
𝟓. 𝟎 𝟖. 𝟐𝟐
𝟔. 𝟎 𝟗. 𝟐𝟐

] 

 

 

The number of rows of a matrix can be obtained as follows: 

mat.numrows -> 3 

 

Similarly, the number of columns of a matrix can be obtained as follows: 

mat.numcolumns -> 3 

 



For the matrix form the examples of methods 2 and 3, the values would be 3 and 3. 

 

4.2.13.2   Complex Matrix 

The elements of a Complex Matrix are of type complex.  A variable, <var>, can be defined as 

Complex Matrix by four different methods. 

First method: 

<var> = | <element>, <element>, … , <element> |, 

       | <element>, <element>, … , <element> |, 

 
                         . 
                          . 
                         . 
 

      | <element>, <element>, … , <element> | 

 

<element>s can be of type Integer, Real, Imaginary or Complex, but if at least one of the 

<element>s is of type Complex, all the matrix elements will be of type Complex. 

Example: 

The matrix from the second method can be created by the following way: 

mat = |1.5+i,  4.7+1.5i,      7.3 |, 

      |    2,        5i, 8.22+0.3i|, 

      |1e-3i,      6+2i,        9 |; 

 

Will result in the following the matrix: 

𝑚𝑎𝑡 = [
1.5 + 𝑖 4.7 + 1.5𝑖 7.3
2.0 5.0𝑖 8.22 + 0.3𝑖

0.003𝑖 6.0 + 2𝑖 9.0
] 

 

Second method: 

<var> = complexMatrix (<numRow>,<numColumn> 
<element>,<element>, … ,<element>) (1) 

 

<numRow> and <numColumn> are number or rows and the number columns in the matrix. The 

total number of elements (TNOE) equals to <numRow> times < numColumn>. 

If there are no other parameters, all the elements in the matrix will be initialized to complex 

numbers, whose real and imaginary parts are zeros. If a third parameter, <element>, of type 



Integer, Real, Imaginary or Complex is provided; all the elements in the matrix will be initialized 

to the value of the third parameter.  If more than one <element> are provided, these <element>s 

will be used in an attempt to fill the matrix.  If the number of <element>s (NOE) is equal to 

TNOE, the matrix will be filled exactly.  If NOE is less than TNOE, the rest of the elements will 

be set to complex numbers, whose real and imaginary parts are zeros.  If the NOE is greater than 

TNOE, the excess  <element>s will be ignored. 

Example: 

mat = complexMatrix (2, 3, 1+2i, 2.0+4i, 0.5i, 4+i, 5+2.5i, 6) 

 

Will result in the following matrix: 

𝑚𝑎𝑡 = [
1.0 + 2𝑖 2.0 + 4𝑖 0.5𝑖
4.0 + 𝑖 5.0 + 2.5𝑖 6.0

] 

 

Third Method: 

<var> = complexMatrix (<complexVector>,<complexVector> 
, … ,<complexVector>) (2) 

 

<complexVector>s are of type Complex Vector.  All <complexVector>s must have the same 

length.  Vectors are represented as columns of the matrix.  Any number of <complexVector>s 

can be provided. 

Example: 

Vec1 = complexVector(1.5+i, 2, … ,1e-3+0.1i) 

Vec2 = [4.7+1.5i, 5i, 6+2i]; 

Vec3 = [7.3, 8.22+0.3i, 9i]; 

mat = complexMatrix (vec1, vec2, vec3) 

 

Will result in the following the matrix: 

𝑚𝑎𝑡 = [
1.5 + 𝑖 4.7 + 1.5𝑖 7.3
2.0 5.0𝑖 8.22 + 0.3𝑖

0.003𝑖 6.0 + 2𝑖 9.0𝑖
] 

 

Fourth Method: 

<varR> = | <real_element>, < real_element>, … , < real_element>  |, 

         | < real_element>, < real_element>, … , < real_element> |, 

 
                            . 
                              . 
                            . 



 

                | < real_element>, < real_element>, … , < real_element> | 

 

<varI> = | <real_element>, < real_element>, … , < real_element>  |, 

        | < real_element>, < real_element>, … , < real_element> |, 

  
                          . 
                          . 
                       . 

 

                | < real_element>, < real_element>, … , < real_element> | 

 

<var> = complexMatrix (<varR>, <varI>); 

 

Example: 

matR = |1.5, 4.7, 7.3 |, 

       |  2,   0, 8.22|, 

       |  0,   6,   9 |; 

 

matI = |   1, 1.5,   0|, 

       |   0,   5, 0.3|, 

       |1e-3,   2,   0|; 

 

mat = complexMatrix (matR, matI); 

 

Will result in the following the matrix: 

𝑚𝑎𝑡 = [
1.5 + 𝑖 4.7 + 1.5𝑖 7.3
2.0 5.0𝑖 8.22 + 0.3𝑖

0.003𝑖 6.0 + 2𝑖 9.0𝑖
] 

 

Attributes for Complex type are given in the table below: 

Call Signature Description Return Type 

real Returns the real part. realMatrix 

imaginary Returns the imaginary part. realMatrix 

magnitude Returns the magnitude. realMatrix 

angle Returns the phase angle. realMatrix 

conjugate Returns the complex conjugate.  complexMatrix  



 

4.2.13.3   Quaternion Matrix 

The elements of a Quaternion Matrix are of type quaternion.  A variable, <var>, can be defined 

as Quaternion Matrix by four different methods. 

First method: 

<var> = | <element>, <element>, … , <element> |, 

       | <element>, <element>, … , <element> |, 

 
                          . 
                        . 
                        . 
 

       | <element>, <element>, … , <element> | (3) 

 

<element>s can be of type Long, Double, Imaginary, Complex or Quaternion, but if at least one 

of the <element>s is of type Quaternion, all the matrix elements will be of type Quaternion. 

Example: 

The matrix from the second method can be created by the following way: 

mat = |1.5+i+2j+3.5k,  4.7+1.5i,      7.3 |, 

      |            2,        5i, 8.22+0.3i|, 

      |        1e-3i,      6+2i,     9+k |; 

 

Will result in the following the matrix: 

𝑚𝑎𝑡 = [
1.5 + 𝑖 + 2𝑗 + 3.5𝑘 4.7 + 1.5𝑖 7.3

2.0 5.0𝑖 8.22 + 0.3𝑖
0.003𝑖 6.0 + 2𝑖 9.0 + 0𝑖 + 0𝑗 + 𝑘

] 

 

Second method: 

<var> = quaternionMatrix(<numRow>,<numColumn> 
<element>,<element>, … ,<element>) (1) 

 

<numRow> and <numColumn> are number or rows and the number columns in the matrix. The 

total number of elements (TNOE) equals to <numRow> times < numColumn>. 

If there are no other parameters, all the elements in the matrix will be initialized to complex 

numbers, whose real and imaginary parts are zeros. If a third parameter, <element>, of type 

Integer, Real, Imaginary, Complex or Quaternion is provided; all the elements in the matrix will 

be initialized to the value of the third parameter.  If more than one <element> are provided, 



these <element>s will be used in an attempt to fill the matrix.  If the number of <element>s 

(NOE) is equal to TNOE, the matrix will be filled exactly.  If NOE is less than TNOE, the rest of 

the elements will be set to quaternions, whose scalar and vector parts are zeros.  If the NOE is 

greater than TNOE, the excess  <element>s will be ignored. 

Example: 

mat = quaternionMatrix(2, 3, 1+2i+3j+4k, 2.0+4j, 0.5i, 4+3k, 5+2.5i, 6) 

 

Will result in the following matrix: 

𝑚𝑎𝑡 = [
1.0 + 2𝑖 + 3𝑗 + 4𝑘 2.0 + 0𝑖 + 4𝑗 + 0𝑘 0.5𝑖
4.0 + 0𝑖 + 0𝑗 + 3𝑘 5.0 + 2.5𝑖 6.0

] 

 

Third Method: 

<var> = quaternionMatrix(<quaternion_realVector>,< 
quaternion_realVector> 

, … ,< quaternion_realVector>) (2) 

 

<complexVector>s are of type vector defined previously.  All <complexVector>s must have the 

same length.  Vectors are represented as columns of the matrix.  Any number of 

<complexVector>s can be provided. 

Example: 

Vec1 = quaternion_realVector(1.5+i+2j+3.5k, 2, … ,1e-3+0.1i) 

Vec2 = [4.7+1.5i, 5i, 6+2i]; 

Vec3 = [7.3, 8.22+0.3i, 9+k]; 

mat = quaternionMatrix(vec1, vec2, vec3) 

 

Will result in the following the matrix: 

𝑚𝑎𝑡 = [
1.5 + 𝑖 + 2𝑗 + 3.5𝑘 4.7 + 1.5𝑖 7.3

2.0 5.0𝑖 8.22 + 0.3𝑖
0.003𝑖 6.0 + 2𝑖 9.0 + 0𝑖 + 0𝑗 + 𝑘

] 

 

Fourth Method: 

<varS> = | <real_element>, < real_element>, … , < real_element>  |, 

        | < real_element>, < real_element>, … , < real_element> |, 

 
                           . 
                           . 
                           . 

 

             | < real_element>, < real_element>, … , < real_element> | 



 

<varI> = | <real_element>, < real_element>, … , < real_element>  |, 

        | < real_element>, < real_element>, … , < real_element> |, 

 
                          . 
                          . 
                          . 

 

              | < real_element>, < real_element>, … , < real_element> | 

 

 

<varJ> = | <real_element>, < real_element>, … , < real_element>  |, 

        | < real_element>, < real_element>, … , < real_element> |, 

 
                           . 
                           . 
                           . 

 

              | < real_element>, < real_element>, … , < real_element> | 

<varK>  = | <real_element>, < real_element>, … , < real_element>  |, 

        | < real_element>, < real_element>, … , < real_element> |, 

 
                           . 
                           . 
                           . 

 

              | < real_element>, < real_element>, … , < real_element> | 

 

<var> = quaternionMatrix(<varS>, <varI>, <varJ>, <varK>); 

 

Example: 

matS = |1.5, 4.7, 7.3 |, 

       |  2,   0, 8.22|, 

       |  0,   6,   9 |; 

 

matI = |   1, 1.5,   0|, 

       |   0,   5, 0.3|, 

       |1e-3,   2,   0|; 

 

matJ = | 2, 0, 0|, 

       | 0, 0, 0|, 

       | 0, 0,  0|; 

 

matK = |3.5, 0, 0|, 

       |  0, 0, 0|, 

       |  0, 0, 1|; 

 



mat = quaternionMatrix(matS, matI, matj, matK); 

Will result in the following the matrix: 

𝑚𝑎𝑡 = [
1.5 + 𝑖 + 2𝑗 + 3.5𝑘 4.7 + 1.5𝑖 7.3

2.0 5.0𝑖 8.22 + 0.3𝑖
0.003𝑖 6.0 + 2𝑖 9.0 + 0𝑖 + 0𝑗 + 𝑘

] 

 

Attributes for Quaternion Matrix type are given in the table below: 

Call Signature Description Return Type 

scalar Returns the scalar part. realMatrix 

i Returns the i component of the vector part. realMatrix 

j Returns the j component of the vector part. realMatrix 

k Returns the k component of the vector part. realMatrix 

norm Returns the norm. realMatrix 

unit Returns the unit quaternion. quaternionMatrix 

conjugate Returns the complex conjugate.  quaternionMatrix 

reciprocal  Returns the reciprocal quaternion. quaternionMatrix 

 

4.2.13.4   Polynomial Matrix 

The elements of a Polynomial Matrix are of type polynomial.  A variable, <var>, can be defined 

as Polynomial Matrix by three different methods. 

First method: 

<var> = | <element>, <element>, … , <element> |, 

       | <element>, <element>, … , <element> |, 

 
                         . 
                         . 
                        . 
 

       | <element>, <element>, … , <element> | 

 

If all the <element>s are of type polynomial, a polynomial matrix will be created. 

Example: 

mat = |  #1,2#,   #3,4#|, 

      |#1,2,3#, #5,6,7#| 

 

Will result in the following the matrix: 



𝑚𝑎𝑡 = [
𝑥 + 2 3𝑥 + 4

𝑥2 + 2𝑥 + 3 5𝑥2 + 6𝑥 + 7
] 

 

Second Method: 

<var> = polynomialMatrix(<numRow>,<numColumn> 
<element>,<element>, … ,<element>) (1) 

 

<numRow> and <numColumn> are number or rows and the number columns in the matrix. The 

total number of elements (TNOE) equals to <numRow> times < numColumn>. 

If there are no other parameters, all the elements in the matrix will be initialized to polynomials 

with a single coefficient of zero value. If a third parameter, <element>,  of type Polynomial is 

provided, all the elements in the matrix will be initialized to the value of the third parameter.  If 

more than one <element> are provided, these <element>s will be used in an attempt to fill the 

matrix.  If the number of <element>s (NOE) is equal to TNOE, the matrix will be filled exactly.  

If NOE is less than TNOE, the rest of the elements will be set to polynomials with a single 

coefficient of zero value.  If the NOE is greater than TNOE, the excess  <element>s will be 

ignored. 

 

Example: 

mat = polynomialMatrix(2, 3, #1#, #1,2,3#, #1,2,3,4#, #1,2,3,4,5#, 

#1,2,3,4,5,6#, #1,2,3,4,5,6,7#) 

 

Will result in the following matrix: 

𝑚𝑎𝑡 = [ 1 𝑥 + 2 𝑥2 + 2𝑥 + 3
𝑥3 + 2𝑥2 + 3𝑥 + 4 𝑥4 + 2𝑥3 + 3𝑥2 + 4𝑥 + 5 𝑥5 + 2𝑥4 + 3𝑥3 + 4𝑥2 + 5𝑥 + 6

] 

 

Third Method: 

<var> = polynomialMatrix 
(<polynomial_realVector>,<polynomial_realVector> 

, … ,<polynomial_realVector>) (2) 

 

< polynomial_realVector>s are of type Polynomial Vector.  All <polynomial_realVector>s 

must have the same length.  Vectors are represented as columns of the matrix.  Any number of 

<polynomial_realVector>s can be provided. 

Example: 



Vec1 = realVector(#1,2#, #1,2,3#) 

Vec2 = [#1,2,3#, #1,2,3,4#]; 

mat = polynomialMatrix(vec1, vec2) 

 

Will result in the following the matrix: 

𝑚𝑎𝑡 = [ 𝑥 + 2 𝑥2 + 2𝑥 + 3
𝑥2 + 2𝑥 + 3 𝑥3 + 2𝑥2 + 3𝑥 + 4

] 

 

Attributes for Polynomial Matrix type are given in the table below: 

Call Signature Description Return Type 

degree Returns the degree of the polynomial. realMatrix 

eval(integer x) Returns the value of the polynomial for the parameter x. realMatrix 

eval(real x) Returns the value of the polynomial for the parameter x. realMatrix 

eval(imaginary x) Returns the value of the polynomial for the parameter x. complexMatrix  

 

4.2.13.5   Rational Matrix 

The elements of a Rational Matrix are of type rational.  A variable, <var>, can be defined as 

Rational Matrix by four different methods. 

First method: 

<var> = | <element>, <element>, … , <element> |, 

       | <element>, <element>, … , <element> |, 

 
                          . 
                          . 
                          . 
 

       | <element>, <element>, … , <element> |, (3) 

 

If all the <element>s are of type Rational, a rational matrix will be created. 

Example: 

The matrix from the second method can be created by the following way: 

mat = |#1,2#/#1,2,3#,           #3,4#/#5,6,7#|, 

      |#11,12#/#11,21,13#, #13,14#/#15,16,17#| 

 

Will result in the following the matrix: 



𝑚𝑎𝑡 = [

𝑥 + 2

𝑥2 + 2𝑥 + 3

3𝑥 + 4

5𝑥2 + 6𝑥 + 7
11𝑥 + 12

11𝑥2 + 12𝑥 + 3

13𝑥 + 14

15𝑥2 + 16𝑥 + 17

] 

 

Second Method: 

<var> = rational_matrix(<numRow>,<numColumn> 
<element>,<element>, … ,<element>) (1) 

 

<numRow> and <numColumn> are number or rows and the number columns in the matrix. The 

total number of elements (TNOE) equals to <numRow> times < numColumn>. 

If there are no other parameters, all the elements in the matrix will be initialized rationals with 

the numerators and the denominators consist of polynomial with a single coefficient of zero 

value. If a third parameter, <element>,  of type Rational is provided, all the elements in the 

matrix will be initialized to the value of the third parameter.  If more than one <element> are 

provided, these <element>s will be used in an attempt to fill the matrix.  If the number of 

<element>s (NOE) is equal to TNOE, the matrix will be filled exactly.  If NOE is less than 

TNOE, the rest of the elements will be set to rationals with the numerators and the denominators 

consist of polynomial with a single coefficient of zero value.  If the NOE is greater than TNOE, 

the excess  <element>s will be ignored. 

 

Example: 

mat = rational_matrix(2, 2, #1#/#1,2,3#, #1,2,3#/#1,2,3,4#, 

#11#/#11,12,13#, #11,12,13#/#11,12,13,14#,) 

 

Will result in the following matrix: 

𝑚𝑎𝑡 = [

1

𝑥 + 2

𝑥 + 2

𝑥2 + 2𝑥 + 3
11

11𝑥 + 12

11𝑥 + 12

11𝑥2 + 12𝑥 + 13

] 

 

Third Method: 

<var> = rational_matrix (<rational_realVector>,<rational_realVector> 
, … ,<rational_realVector>) (2) 

 



<rational_realVector>s are of type Polynomial Vector.  All <polynomial_realVector>s 

must have the same length.  Vectors are represented as columns of the matrix.  Any number of 

<rational_realVector>s can be provided. 

Example: 

Vec1 = rational_realVector(#1#/#1,2#, #11#/#11,12#) 

Vec2 = [#1,2#/#1,2,3#, #11,12#/#11,12,13#]; 

mat = rational_matrix(vec1, vec2) 

 

Will result in the following the matrix: 

𝑚𝑎𝑡 = [

1

𝑥 + 2

𝑥 + 2

𝑥2 + 2𝑥 + 3
11

11𝑥 + 12

11𝑥 + 12

11𝑥2 + 12𝑥 + 13

] 

 

Fourth Method: 

<var> = rational_matrix 
(<numerator_polynomialMatrix>,<denominarot_polynomialMatrix>) 

 

All the elements in the <numerator_polynomialMatrix> and 

<denominarot_polynomialMatrix must be of type Polynomial. 

Example: 

num = | #1#,   #1,2#|, 

      |#11#, #11,12#|; 

 

den = |  #1,2#,    #1,1,3#|, 

      |#11,12#, #11,12,13#|; 

 

mat = rational_matrix(num,den) 

 

 

Will result in the following the matrix: 

𝑚𝑎𝑡 = [

1

𝑥 + 2

𝑥 + 2

𝑥2 + 2𝑥 + 3
11

11𝑥 + 12

11𝑥 + 12

11𝑥2 + 12𝑥 + 13

] 

 

Attributes for Rational Matrix type are given in the table below:  



Call Signature Description Return Type 

num Returns the numerator. polynomialMatrix 

den Returns the denominator. polynomialMatrix 

eval(integer x) Returns the value of the polynomial for the 

parameter x. 
realMatrix 

eval(real x) Returns the value of the polynomial for the 

parameter x. 
realMatrix 

eval(imaginary x) Returns the value of the polynomial for the 

parameter x. 
complexMatrix  

 

4.2.14 Array 

A variable, <var>, can be defined as an array by following ways: 

<var>  = {<element>, < element >, …, < element >}; 
 

<element> can be of any type, and several types can be mixed. Elements of an array can be 

accessed by specifying indices of the elements in an index operator ([]). The indices start at 1. 

Consecutive elements can be accessed by using a range operator (:) with the fist and the last 

indices of interest.  

a[<index>] -> element value 

a[<index_start>:<index_end>]-> element values. 

 

Values of specific elements can be assigned by using indices and range operator in the similar 

manner as in accessing element values.  

a[<index>] = element value 

a[<index_start>:<index_end>] = element values. 

 

Examples: 

Array definitions: 

a = {1, 2.5, 3.0, true, ‘c’, “abc”,…}; 

 

Accessing element values 

a[1] -> 1  

a[4] -> true. 

a[1:3] -> 1, 2.5, 3.0   

 

Assigning element values: 

a[2] = 2.5; 

 



4.2.15 Table 

Tables are two dimensional arrays. 

Examples: 

tbl = {{‘a’, “abc”},{2, 3.5}}; 

 

 

4.3 Statements 

 

4.3.1 Expression 

Logical expressions can be created by combining any of the logical operators. 

Example: 

l = (a > b || c < d) && (e != 0 && f==1) 

 

Algebraic expressions can be created by combining any of mathematical operators or functions.  

A list of available functions will be presented later in the document. 

Example: 

x = (a*b) + c*d^2 – e/f + abs(y);  

 

 

The mathematical operators can operate on multiple data types.  The table below provides a list 

of the valid operators, their descriptions, and the valid left and right operands types for each 

operator. 

 

Operator Operation Left Operand Data Types Right Operand Data 

Types 
"+" Plus Integer, real, imaginary, complex, 

quaternion, polynomial, rational, 

real vector, real matrix 

Integer, real, imaginary, complex, 

quaternion, polynomial, rational, 

real vector, real matrix 

"-" Minus Integer, real, imaginary, complex, 

quaternion, polynomial, rational, 

real vector, real matrix 

Integer, real, imaginary, complex, 

quaternion, polynomial, rational, 

real vector, real matrix 

"*" Multiply Integer, real, imaginary, complex, 

quaternion, polynomial, rational, 

real vector, real matrix 

Integer, real, imaginary, complex, 

quaternion, polynomial, rational, 

real vector, real matrix 

"/" Divide Integer, real, imaginary, complex, 

quaternion, polynomial, rational, 

Integer, real 



real vector, real matrix complex, 

quaternion, polynomial 

"^" Exponent Integer, real, imaginary, complex, 

quaternion, polynomial, rational, 

real vector, real matrix 

Integer, real 

"%" Remainder Integer, real Integer, real 

":" Range Integer, real Integer, real 

 

The Range operator (:) can be used to access elements of an array, vector or a matrix.  A range 

of numbers from a to b with increments of 1 is expressed as a:b. And a range of numbers from a 

to b with increments of c is expressed as a:c:b. 

 

Examples: 

1:10 -> 1, 2, 3, 4, 5 ,6, 7, 8, 9, 10 

1:0.5:3.5 -> 1.0, 1.5, 2.0, 2.5, 3.0, 3.5 

 

4.3.2 Control Flow Statements 

 

4.3.2.1 If Statement 

The syntax for creating if statement is: 

if (<logical expression>) 

{ 

   <Statements> 

} 

or 

if (<logical expression>) 

{ 

   <Statements> 

} 

else 

{ 

   <Statements> 

} 

 

or 

if (<logical expression>) 

{ 

   <Statements> 

} 

else if (<logical expression>) 

{ 

   <Statements> 



} 

 
   . 
   . 
   . 
 
else 

{ 

   <Statements> 

} 

 

Example: 

a = 10; 

b = 5; 

if (a < b) 

{ 

   print("a less than b") 

} 

else if (a > b) 

{ 

   print("a greater than b") 

} 

else 

{ 

  print("a equal to b") 

} 

 

4.3.2.2 Switch Statement 

The syntax for creating switch statement is: 

switch ( variable_to_test ) 

{  

   case value  

   { 

      <statements> 

      break; 

   } 

   case value 

   {  

      <statements> 

      break; 

   } 

 
   . 
   . 
   . 
    
   default 

   { 

      <statements> 

   } 

} 

 

Example: 



a = 2; 

 

switch(a) 

{ 

   case 1 

   { 

      b=2 

      break 

   } 

   case 2 

   { 

      b=3 

      break 

   } 

   case 3 

   { 

      b=4; 

      break 

   } 

   default 

   { 

      b=5; 

   } 

} 

4.3.2.3 For Loop 

The syntax for creating for loop is: 

for <index> in <list> 

{ 

   <statements> 

} 

 

Examples: 

week = {“Monday”, “Tuesday”, “Wednesday”, “Thursday”, “Friday”, 

“Saturday”, “Sunday”}; 

 

for i in week 

{ 

   print(i); 

} 

  

for i in -5.0:0.5:5.0 

{ 

   print(i); 

} 

 

for i in 1:numOfPoints_x 

{ 

   for j in 1:numOfPoints_y 

   { 

      R = sqrt(x[i]^2 + y[j]^2) + 1.0e-12; 

      z[i,j] = sin(R)/(R*0.1) + 1.0; 

   } 



} 

 

4.3.2.4 Loop 

The loop statement can be used two different ways: 

1. Infinite loop with a break statement inside the loop. 

2. A loop with a termination condition. 

 

The syntax for creating the infinite loop is: 

loop 

{ 

   <statements> 

   break; 

} 

 

If the break statement not used the loop will run forever. 

The syntax for creating loop is: 

loop 

{ 

 <statements> 

} 

while(<logical expression>) 

 

Example: 

i = 0; 

loop  

{ 

   print(i); 

   I = i+1; 

   if (i==10) break; 

} 

 

 

Example: 

i = 0; 

loop  

{ 

   print(i); 

   I = i+1; 

} 

while (i < 10); 

 



4.3.2.5 While Loop 

The syntax for creating while loop is: 

while(<logical expression>) 

{ 

   <statements> 

} 

 

Example: 

i = 0; 

while (i < 10) 

{ 

   print(i); 

   i = i+1; 

} 

 

4.3.3 Try Catch Finally Statements 

The syntax for try/catch/finally statement has three different forms.  The simplest one 

consists of a single try and a catch block, as below: 

try  

{ 

   <Statements> 

} 

catch ( Exception )  

{ 

   <Statements> 

}  

 

Multiple catch blocks can be added to a single try block, as below: 

try  

{ 

   <Statements> 

} 

catch ( <Exception> )  

{ 

   <Statements> 

}  

 
   . 
   . 
   . 
 
catch ( <Exception> )  

{ 

   <Statements> 

} 

 

An optional finally block can be added: 



try  

{ 

   <Statements> 

} 

catch ( <Exception> )  

{ 

   <Statements> 

}  

 
   . 
   . 
   . 
 
catch ( <Exception> )  

{ 

   <Statements> 

} 

finally 

{ 

   <Statements> 

} 

 

4.4 Functions 

 

4.4.1 Declaration 

The syntax for function declaration is: 

function <identifier> (<type> <identifier>, … , 

<type> <identifier>) 

{ 

   statements 

} 

 

or 

function <identifier> (<type> <identifier>, … , 

<type> <identifier>) 

{ 

   statements 

   return_statement 

} 

 

or 

function <identifier> (<type> <identifier>, … , 

<type> <identifier> = <default_value>, …) 

{ 

   statements 

} 

or 

function <identifier> (<type> <identifier>, … , 



<type> <identifier> = <default_value>, …) 

{ 

   statements 

   return_statement 

} 

 

The symbol (…) in the parameter list indicates optional repetition of the pattern. The parameter 

list can optionally have default values.  If values for these parameters are not provided during a 

function call, the default values are used.  Hyper supports function overloading.  Two or more 

functions can have the same function name if they have different parameters.  In this case, the 

function whose parameters match the calling parameters will be executed. 

Local variables can be defined anywhere in the function.  If a local variable is defined using a 

name that is also a name of a global variable, the local variable will shadow the global variable.   

The return statement is optional.  If return statement is not used, the function behaves a 

procedure.  Hyper functions can return multiple values.  To return multiple values, the return 

values need to be put in an array and return the array. 

Examples: 

function display(real x) 

{ 

   print(x); 

} 

 

function abc(integer x) 

{ 

   return x*2; 

} 

 

function abc(integer x, integer y) 

{ 

   return x*y; 

} 

 

function abc(real x, real y=2.0) 

{ 

   return x/y;  

} 

 

function abc(real a, real b, real c) 

{ 

   return {a*2, b*2, c*2}; 

} 

 

4.4.2 Call 

The syntax for function call is: 



<function identifier>(<value>, <value>,…<value>); 

 

or 

 

<variable> = <function identifier>(<value>, <value>,…<value>); 

 

or  

 

(<variable>, <variable>, … ,<variable>) 

 = <function identifier>(<value>, <value>,…<value>); 

 

 

Examples: 

t_int = abc(2); 

print(t_integer); 

 

t_int_int = abc(7,2); 

print(t_int_int); 

 

t_real = abc(4.0); 

print (t_real); 

 

t_no_default = abc(27.0,6.0); 

print(t_no_default); 

 

t_default = abc(27.0); 

print(t_default); 

 

inv_m1 = inv(m1); 

 

(eigvec_m1, eigval_m1) = eigen(m1); 

 

The last example shows multiple return values. 

 

4.5 Class 

A class is declared in the following way: 

class <identifier>  

{ 

 class statements; 

} 

 

or 

class <identifier>  



(<inherited class identifier>, … , <inherited class identifier>) 

{ 

 class statements; 

} 

 

 

Examples: 

class Point2D 

{ 

   a = 10; 

   this.b = 5; 

 

   function Point2D() 

   { 

   } 

    

   function Point2D(real x) 

   { 

      this.x = x; 

   } 

 

   function Point2D(real x, real y) 

   { 

      this.x = x; 

      this.y = y; 

   } 

    

   function setA() 

   { 

      Point2D.a=15; 

   } 

    

      function setBA(real b1, real a1) 

      { 

         this.b = b1; 

         Point2D.a = a1; 

      } 

 

} 

 

The keyword this indicates that it is an object variable whose value can differ for each instance 

of the object.  If a variable is declared without the this keyword, the variable will be a class 

variable, and its value will be the same in all instances of the class. 

 

4.6 Import 

 

4.6.1 Import Script 

 



import <module_name>, … , <module_name>, 

 

4.6.2 Import Java 

 

import_java_class(<java_class_path>, … , < java_class_path >) 

 

 

Examples: 

 

lib_math = import_java_class("java.lang.Math") 

lib_basic = import_java_class("library.Basic") 



5 Class Libraries 

Related Hyper library functions are grouped together and implemented using Java classes.  One 

of the advantages using classes is that a primitive operation can be performed ones and multiple 

higher-level operations can be done subsequently without re invoking the primitive operation.  

For example, in linear algebra, to compute determinant, trace, inverse, or a solution, a LUP 

decomposition of a matrix need to be performed.  Once a matrix is decomposed, determinant, 

trace, inverse, or a solution can be computed without re performing the decomposition. Another 

advantage of using class is that one can have multiple instances of the same class with different 

attributes.  For example, we can have two different instances of the class Integrator or ODE 

Solver with two different step sizes or integration schemes.  In some cases, a library consists of 

several classes.  In these cases, there is a class that contains the constituent classes. The 

following outline illustrates the organizational structure of the libraries. 

1. General Math 

2. Linear Algebra 

a. Utility 

b. Linear Equations 

c. Linear Least Square 

d. Eigen 

e. Singular Value 

3. Zero Min Max 

a. Root Finder 

b. Optimization 

4. Analysis 

a. Differentiation 

b. Integration 

c. Ordinary Differential Equation 

5. Estimation 

a. Interpolation 

b. Curve Fit 

6. Stochastic 

a. Statistics  

i. Histogram 

b. Probability 

i. Uniform Distribution 

ii. Triangular Distribution 

iii. Normal Distribution 

iv. Log Normal Distribution 

v. Student Distribution 



vi. Gamma Distribution 

vii. Chi-Squared Distribution 

viii. Exponential Distribution 

ix. Laplace Distribution 

x. Beta Distribution 

xi. Fisher Snedecor Distribution 

xii. Fisher Tippett Distribution 

xiii. Weibull Distribution 

xiv. Cauchy Distribution 

xv. Histogrammed Distribution 

xvi. All Distribution 

7. Frequency Domain 

a. FFT 

 

The functions in the libraries are accessed by first importing the library then calling a function in 

the library using a dot notation.  A library can be imported using a command of the following 

format: 

 
<pointer>  = import_java_class(<class path>") 

 

A function in the library can be called using the following format: 

 
<var> = <pointer>.<function_name>(<param>, <param>, … <param>,) 

 

Example: 

The determinant of a matrix can be computed the following way: 

linEqn = import_java_class("library.linear_algebra.LinearEquations"); 

det = lib_la.determinant(mat); 

 

where, linEqn is the pointer to the library, library.linear_algebra.LinearEquations is the 

class path, determinant is the name of the function, mat is a variable of type Real Matrix, and 

det is variable of type Real. 

The library class paths and the function call signature, descriptions, and return types are 

documented in Appendices A – H.  Descriptions of the libraries are presented in the sections 

below. 

5.1 General Math 

The General Math library contains functions that are normally found with any programming 

language such as Java.  The functions in this library include absolutes value function, 



trigonometric and hyperbolic functions etc.  A complete list of the functions can be found in 

Appendix A.  Some of these functions are overloaded for various types such as Integer, Real, 

Vector, and Matrix.   

5.2 Linear Algebra 

The Linear Algebra library composed of five classes: All, Linear Equations class, Linear Least 

Square class, Singular Value class, and Eigen class.   Each of these classes is described below. 

5.2.1 Utility 

The Utility class contains methods for creating various types of vectors and matrices, accessing 

their attributes, and performing operations specific to vectors and matrices.  All the functions 

contained in the Utility class are listed in the Appendix B. 

5.2.2 Linear Equations 

The Linear Equations class contains methods for solving linear equations of number equal to the 

number of unknowns.  These equations are transformed in the following form: 

𝑨𝒙 = 𝒃 

Where A is a square matrix of size nxn, represents n equations and n unknowns.  x is a column 

vector of n unknowns, and b is a column vector of n inhomogeneous terms.  A is called the 

coefficient matrix.  Gaussian Elimination method is used to factorize the matrix A into three 

matrices: Lower Triangular (L), Upper Triangular (U), and Permutation (P). Hence, it’s called 

LUP factorization.  The matrix A can be LUP factorized by calling the function decompose. 

Once A is LUP factorized, various other operations such as computing determinant and inverse 

can be performed by calling functions such as determinant and inverse. All the functions 

contained in the Linear Equation class are listed in the Appendix B.  The example below shows 

how to use this class. 

  Example: 

linEqn = import_java_class("library.linear_algebra.LinearEquations") 

The statement above imports the Linear Equation class and assigns to the pointer linEqn. 

A = |3.0, -0.1, -0.2|, 

    |0.1,    7, -0.3|, 

    |0.3, -0.2, 10.0|  

The statement above creates a 3x3 real matrix and assigns to the variable A. 

 
b = [7.85, -19.3, 71.4]; 

 



The statement above creates a column vector and assigns to the variable b. 

 
linEqn.decomposeLUP(A); 

 

The statement above performs LUP factorization of the matrix A. 

 
(l, u ,p) = linEqn.lup() 

 

The statement above assigns the computed L, U, and P matrices to the variables l, u, and p. 

 

Alternately, 

 
l = linEqn.lower() 

 

The statement above assigns the computed L matrix to the variable l. 

 

u = linEqn.upper() 

 

The statement above assigns the computed U matrix to the variable u. 

 

p = linEqn.permutation() 

 

The statement above assigns the computed P matrix to the variable p. 

 

det  = linEqn.determinant(); 

 

The statement above computes the determinant of the matrix A and assigns it to the variable det. 

 
tr  = linEqn.trace(); 

 

The statement above computes the trace of the matrix A and assigns it to the variable tr. 

 
inv = linEqn.inverse(); 

 

 

The statement above command above computes the inverse matrix of A and assigns it to the 

variable inv. 

 
solb = linEqn.solve(b); 

 

The statement above computes the solution corresponding the inhomogeneous terms column b 

and assigns it to the variable solb.  Note that to compute solution for another inhomogeneous 



terms column, say c, the coefficient matrix A does not need to be factorized again.  The solution 

can be obtained simply using the following statement: 

 
solc = linEqn.solve(c); 

 

The solutions for both inhomogeneous terms columns can also be computed using a single call 

by combining c and d into a matrix (bc) and passing this matrix as a parameter as in the 

following statements: 

 
bc = realMatrix(b,c); 

solbc = linEqn.solve(bc); 

 

Note: For each of the function call above, the matrix A can be passed in as a parameter.  In this 

case, A will be factorized for each function call. 

 

5.2.3 Linear Least Squares 

The Linear Least Squares class contains methods for solving linear equations, where the number 

of equations are not equal to the number of unknowns. 

When the number of equations is greater than the number of unknowns, it is called an 

overdetermined system.  Linear least square is the problem of approximately solving an 

overdetermined system of linear equations, where the best approximation is defined as that 

which minimizes the sum of squared differences between the data values and their corresponding 

modeled values. The approach is called "linear" least squares since the assumed function is linear 

in the parameters to be estimated. 

Let 𝑨𝒙 = 𝒃 be an overdetermined linear equation. Where A is an mxn matrix with m > n. If b is 

not in the column space of A, the system is inconsistent and the equation cannot be solved for x. 

In this case, a least-squares solution can be found by minimizing 

‖𝑨𝒙 − 𝒃‖ =  (∑(∑𝑎𝑖𝑗𝑥𝑗 − 𝑏𝑖

𝑛

𝑗=1

)

2
𝑚

𝑖=1

)

1/2

 

 

𝒓 = 𝑨𝒙 − 𝒃 is called the residual or error. x with the smallest residual norm ‖𝒓‖ is called the 

least-squares solution, which is equivalent to minimizing ‖𝑨𝒙 − 𝒃‖2. All the functions contained 

in the Linear Least Squares class are listed in the Appendix B. 

 



  Example: 

linLS = import_java_class("library.linear_algebra.LinearLeastSquare"); 

The statement above imports the Linear Equation class and assigns to the pointer linLS. 

A = |-2, 1|, 

    |-1, 1|, 

    | 1, 1|, 

    | 2, 1|, 

    | 1, 2|; 

The statement above creates a 5x2 real matrix and assigns to the variable A. 

b = [0, 1, 2, 2, 3]; 

 

The statement above creates a column vector and assigns to the variable b. 

 
linLS.decomposeQR(A); 

 

The statement above performs QR factorization of the matrix A. 

 
(Q, R) = linLS.qr() 

 

The statement above assigns the computed Q, and R matrices to the variables Q, and R. 

 

Alternately, 

 
Q = linLS.getQ() 

 

The statement above assigns the computed Q matrix to the variable Q. 

 

R = linLS.getR() 

 

The statement above assigns the computed R matrix to the variable R. 

 

inv = linLS.inverseLS(); 

 

The statement above computes the least squares inverse matrix of A and assigns it to the variable 

inv. 

 

x = lib_lls.solveLS(b); 

 

The statement above computes the least squares solution corresponding the column b and assigns 

it to the variable x.   

 



5.2.4 Eigen 

The Eigen class contains methods for computing eigenvalues and eigenvectors of a real or 

complex square matrix. 

An eigenvector or characteristic vector of a square matrix is a vector that only changes its 

magnitude (length), but does not change its direction under the associated linear transformation. 

In other words—if x is a vector that is not zero, then it is an eigenvector of a square matrix A if 

Ax is a scalar multiple of x. This condition could be written as the equation.  An eigenvector is a 

nonzero vector that satisfies the equation 

𝑨𝒙 =  𝜆𝒙 

Where A is an nxn square matrix, scalar  is called the eigenvalue of A and x is called the 

eigenvector of A corresponding to .  Eigenvalues and eigenvectors are also called proper roots 

and proper vectors(“eigen” is German for the word “own” or “proper”) or characteristic roots 

and  characteristic vectors or latent roots and latent vectors. Geometrically, the equation 𝑨𝒙 =

 𝜆𝒙 implies that 𝑨𝒙 𝑎𝑛𝑑 𝒙 are parallel.  An eigenvector corresponding to a real, nonzero 

eigenvalue points in a direction that is stretched by the transformation and the eigenvalue is the 

factor by which it is stretched. If the eigenvalue is negative, the direction is reversed.  

Eigenvalues and eigenvectors can be either real or complex. All the functions contained in the 

Eigen class are listed in the Appendix B. 

   

Example 1: 

eig  = import_java_class("library.linear_algebra.Eigen"); 

The statement above imports the Eigen class and assigns to the pointer eig. 

A = |3.0, -0.1, -0.2|, 

    |0.1,    7, -0.3|, 

    |0.3, -0.2, 10.0|; 

 

The statement above creates a real matrix and assigns to the variable A. 

(eigval, eigvec) = lib_eigen.eigen(A); 

The statement above computes eigenvalues and eigen vectors of a real matrix A and assigns to 

the variables eigval and eigvec respectively. 

Example 2: 

C = | 1+3i, 2+1i, 3+2i, 1+i |, 

    | 3+4i, 1+2i, 2+1i, 4+3i|, 



    | 2+3i, 1+5i, 3+1i, 5+2i|, 

    | 1+2i, 3+1i, 1+4i, 5+3i|; 

 

The statement above creates a complex matrix and assigns to the variable C. 

(eigval, eigvec) = lib_eigen.eigen(C); 

The statement above computes eigenvalues and eigen vectors of a complex matrix C and assigns 

to the variables eigval and eigvec respectively. 

 

5.2.5 Singular Value 

The Singular Value class contains methods to perform singular value decomposition, compute 

pseudo inverse, and solve over determined and under determined system of linear equations. 

Given a complex matrix A having m rows and n columns, the matrix product U  V∗ (* denotes 

conjugate transpose) is a singular value decomposition for a given matrix A if 

•  U and V, respectively, have orthonormal columns. 

•   has nonnegative elements on its principal diagonal and zeros elsewhere. 

•  A = U  V∗. 

Let p and q be the number of rows and columns of . U is m×p, p ≤ m, and V is n×q with q ≤ n. 

There are three standard forms of the SVD. All have the ith diagonal value of  denoted σi and 

ordered as follows: σ1 ≥ σ2 ≥ · · · ≥ σk , and r is the index such that σr > 0 and either k = r or σr+1 

= 0. 

1. p = m and q = n. The matrix  is m × n and has the same dimensions as A. 

2. p = q = min{m, n}.The matrix  is square. 

3. If p = q = r, the matrix  is square. This form is called a reduced SVD and denoted by �̂�Σ̂�̂�∗ 

The three standard forms are graphically illustrated  

 

 
The first form of the singular value decomposition where m < n. 

 



 

The second form of the singular value decomposition where m ≥ n. 

 

 

The second form of the singular value decomposition where m < n. 

 

 

The first form of the singular value decomposition where m ≥ n. 

 

The third form of the singular value decomposition where r ≤ n ≤ m. 

 

 

The third form of the singular value decomposition where r ≤ m < n. 

 

In the first standard form of the SVD, U and V are unitary.  If A is real, then U and V (in addition 

to ) can be chosen real in any of the forms of the SVD. The singular value decomposition U  

V∗ is not unique. If U  V∗ is a singular value decomposition, so is (−U)  (−V∗). The singular 

values may be arranged in any order if the columns of singular vectors in U and V are reordered 

correspondingly. All the functions contained in the Singular Value class are listed in the 

Appendix B. 

 

 

 



Example: 

lib_svd = import_java_class("library.linear_algebra.SingularValue"); 

The statement above imports the Singular Value class and assigns to the pointer lib_svd. 

A1 = |22, 10,  2,   3,  7|, 

     |14,  7, 10,   0,  8|, 

     |-1, 13, -1, -11,  3|, 

     |-3, -2, 13,  -2,  4|, 

     | 9,  8,  1,  -2,  4|, 

     | 9,  1, -7,   5, -1|, 

     | 2, -6,  6,   5,  1|, 

     | 4,  5,  0,  -2,  2|; 

 

The statement above creates a real matrix and assigns to the variable A1. 

(u,s,v) = lib_svd.svd(A1); 

 

The statement above first factorizes the matrix A1 then assigns the computed U, S, and V 

matrices to the variables u, s, and v. 

 
A2 = lib_svd.pseudoinverse(); 

 

The statement above computes pseudo inverse of the matrix A1 from the already factorized 

matrix u and assigns to the variable A2. 

b = [-1, 2, 1, 4, 0, -3, 1, 0]; 

 

The statement above creates a real vector and assigns to the variable b. 

x = lib_svd.solveSVD(b) ; 

 

The statement above computes the over determined solution of A1 corresponding to the column b 

and assigns it to the variable x.   

5.3 Zero Min Max 

The Zero Min Max library contains methods to find zeros, maxima, and minima of a function.  

The Zero Max Min library contains three classes Root Finder, Optimizer, and All.  The All class 

contains functions from the Root Finder and Optimizer classes. 

 

 



5.3.1 Root Finder 

The objective of a root finder is to compute solutions of the equation 

𝑓(𝑥) = 0 

Two different methods are available to find roots of a function: Bisection method and Newton 

method. All the functions contained in the Root Finder class are listed in the Appendix C. 

Example: 

rf  = import_java_class("library.function_eval.RootFinder") 

The statement above imports the Root class and assigns to the pointer rf. 

function eqn(real x) 

{ 

  y = x^3+x-1; 

  return y; 

} 

 

The code fragment above sets up an equation whose root is to be determined. 

result = rf.bisection("eqn(real)", 0.0, 1.0, 0.5e-7); 

 

The statement above computes a root using the Bisection method with the bracketing values of 

0.0 and 1.0 and a relative precision value of 0.5e-7. 

result = rf.newton("eqn(real)", 0.0, 0.5e-7); 

 

The statement above computes a root using the Newton method with the initial guess of 0.0 and a 

relative precision value of 0.5e-7. 

Alternatively, the same result can be achieved by first setting the root finder method using one of 

the following statements: 

setBisection(); 

or 

setNewton(); 

 

Then setting up an equation using the following statement: 

setFunction("eqn(real x)"); 

 



Then setting the relative precision using the following statement: 

setPrecision(0.5e-7); 

 

After this the multiple attempts to find a root can be made with different bracketing values (for 

Bisection method) or initial guesses (for Newton method) using one of the following statements: 

 
bisection(0.0, 1.0); 

or 

newton(0.0); 

 

5.3.2 Optimizer 

An optimization problem can be represented in the following way: 

Given: a function f : A R from some set A to the real numbers 

Sought: an element x0 in A such that f(x0) ≤ f(x) for all x in A ("minimization") or such 

that f(x0) ≥ f(x) for all x in A ("maximization"). 

optimization problems are usually stated in terms of minimization. Generally, unless both the 

objective function and the feasible region are convex in a minimization problem, there may be 

several local minima. A local minimum x* is defined as a point for which there exists some δ > 0 

so that for all x such that 

‖𝑋 − 𝑥∗‖ ≤  𝛿 

the expression 

𝑓(𝑥∗) ≤ 𝑓(𝑥) 

holds; that is to say, on some region around x* all of the function values are greater than or equal 

to the value at that point. Local maxima are defined similarly.  Two different optimization 

strategies are available: Powell (also known as hill climbing) and Simplex. 

All the functions contained in the Optimizer class are listed in the Appendix C. 

Example: 

opt = import_java_class("library.function_eval.Optimizer") 

The statement above imports the Optimizer class and assigns to the pointer opt. 

function banana(realVector x) 
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{ 

  return 100*(x[2] - x[1]*x[1])*(x[2] - x[1]*x[1]) 

         +(1 - x[1])*(1 - x[1]); 

} 

 

The code fragment above defines the Rosenbrock's banana function whose optimum is to be 

determined. 

result = opt.simplex("banana(realVector x)", [10, -10]); 

 

The statement above computes the optimum of the Rosenbrock's banana function using the 

Simplex method.  The first parameter is the signature of the function, and the second parameter 

is a vector whose elements are the initial values. 

 result = opt.powell("banana(realVector x)", [10, -10]); 

 

The statement above computes the optimum of the same function using the Powell (Hill 

Climbing) method.   

print(result); 

The statement above prints the computed values. 

Alternately, the same results can be obtained by first setting the optimizer using the following 

statement: 

opt.setOptimizer("simplex”); 

or 

opt.setOptimizer("powell”); 

Then setting an optimization strategy as: 

opt.setStrategy(“max”); 

or 

opt.setStrategy(“min”); 

Then setting the function as: 

opt.setFunction("banana(realVector x)"); 

Then setting the initial values as: 

opt.setGuess([10, -10]); 

Then computing the optimum values as: 



result = opt.optimize(); 

 

5.4 Analysis 

The Analysis library contains methods to compute definite integrals and derivatives of a function 

and solutions of ordinary differential equations.  The Analysis library contains four classes: 

Differentiator, Integrator, ODE Solver, and All. The All class contains functions from the Root 

Finder and Optimizer classes.  All the functions contained in the Analysis library are listed in the 

Appendix D. 

5.4.1 Differentiator 
 

 The definition of a derivative 

𝑓′(𝑥) =  lim
𝑥→0

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
 

 

Assuming the limit exists; i.e. the function is differentiable.  The derivative of a function at x 

can be approximated by 

𝑓′(𝑥) ≈
𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
 

Where h is a very small positive number. 

The above formula is called Forward Difference method.  The Differentiator class uses a more 

accurate formula called the Centered Difference method which is given as: 

𝑓′(𝑥) ≈
𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ)

2ℎ
 

 

In vector calculus, the Jacobian matrix is the matrix of all first-order partial derivatives of a 

vector-valued function.  The Jacobian matrix J of f is an m×n matrix, usually defined and 

arranged as follows: 

𝑱 =
𝑑𝒇

𝑑𝒙
= [

𝜕𝒇

𝜕𝑥1
…

𝜕𝒇

𝜕𝑥𝑛
] =

[
 
 
 
 
𝜕𝑓1
𝜕𝑥1

⋯
𝜕𝑓1
𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑓𝑚
𝜕𝑥1

⋯
𝜕𝑓𝑚
𝜕𝑥𝑛]

 
 
 
 

 

or, component-wise: 



𝑱𝑖,𝑗 =
𝜕𝑓𝑖
𝜕𝑥𝑗

 

 

The Differentiator class contains functions to compute derivative of a function at a given point, 

derivative of a vector with respect to another vector, derivative of a polynomial, and Jacobian 

matrix of a system of functions. 

All the functions contained in the Differentiator class are listed in the Appendix D. 

Example 1: 

dif = import_java_class("library.analysis.Differentiator"); 

 

The statement above imports the Differentiator class and assigns to the pointer dif. 

function func(real x) 

{ 

   return -0.1*x^4 -0.15*x^3 - 0.5*x^2 - 0.25*x + 1.2; 

} 

 

The code fragment above defines the function to be differentiated. 

result = dif.dydx("func(real x)",0.5, 1e-6); 

 

The statement above computes the derivative of the function at 0.5.  The first parameter is the 

signature of the function, the second parameter is the value at which the derivative is computed, 

and the third parameter is the step size. 

print(result); 

The statement above prints the computed values. 

 

Example 2: 

x = -10:0.25:10; 

 

The statement above creates a vector whose elements range from -10.0 to 10.0 in increments of 

0.25 and assigns it to variable x.  

y = x1^2; 

 



The statement above creates a vector whose elements are squares of the elements of the vector x 

and assigns it to variable y. 

dydx = dif.dydx(x, y); 

 

The statement above differentiates vector y with respect to vector x and assigns to variable dydx. 

print(dydx); 

 

The statement above print the variable dydx. 

 

Example 3: 

poly = #1,2,3#; 

 

The statement above creates the following polynomial: 

𝑥2 + 5𝑥 + 3 
 

dpoly = dif.derivative(poly); 

 

The statement above computes the derivative of the polynomial. 

print(dpoly); 

 

The statement above print the following output: 

dpoly = 2X + 5  

 

Example 4: 

function func2(realVector x) 

{ 

   y = zeros(3); 

   y[1] = x[1]*x[1]*x[1] + x[2]; 

   y[2] = x[2]*10.0 + x[2]*x[1]*x[1]; 

   y[3] = x[1]*x[2]; 

   return y; 

} 

x = [2, 1]; 

 

The code fragment above defines a system of functions whose Jacobian matrix is to be computed 

at point x = (2,1). The point x is specified using a vector.  



jcob = dif.jacobian("func2(realVector x)", x); 

 

The statement above computes the Jacobian matrix at point x and assigns it to a variable jcob. 

print(jcob); 

 

The statement above prints the computed Jacobian matrix. 

 

5.4.2 Integration 

Given a function f of a real variable x and an interval [a, b] of the real line, the definite integral 

 

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

 

is defined informally as the signed area of the region in the xy-plane that is bounded by the graph 

of f, the x-axis and the vertical lines x = a and x = b. The area above the x-axis adds to the total 

and that below the x-axis subtracts from the total. 

A double integral is defined as  

∬ 𝑔(𝑥, 𝑦)𝑑𝑥𝑑𝑦
Ω

 

where Ω is a triangle with vertices (𝑥𝑖 , 𝑦𝑖), (𝑥𝑗 , 𝑦𝑗), and  (𝑥𝑘, 𝑦𝑘) and 𝑔 is real valued. 

There are two types of integrators in the Integrator class: definite integrators and polynomial 

integrators.  Several integration schemes are available for definite integrators: Simpson, Simpson 

Richardson, Romberg, Quadrature, and Tricube.  Tricube is a double integrator, and all others 

are line integrators. 

All the functions contained in the Integrator class are listed in the Appendix D. 

Example 1: 

integ = import_java_class("library.analysis.Integrator"); 

The statement above imports the Integrator class and assigns to the pointer integ. 

function integrand(real x) 

{ 

   y = (10*exp(-x)*sin(2*PI*x))^2; 

   return y; 

} 
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The code fragment above defines the function to be integrated. 

integ.setFunction("integrand(real)"); 

The statement above sets up the integrand. 

result = integ.simpson(0.0, 0.5); 

The statement above performs integration from 0.0 to 0.5 using Simpson method and assigns the 

integrated value to the variable result. 

result = integ.simpsonRichardson (0.0, 0.5); 

The statement above performs integration from 0.0 to 0.5 using Simpson Richardson method and 

assigns the integrated value to the variable result. 

result = integ.romberg (0.0, 0.5); 

The statement above performs integration from 0.0 to 0.5 using Romberg method and assigns the 

integrated value to the variable result. 

result = integ.quadrature (0.0, 0.5); 

The statement above performs integration from 0.0 to 0.5 using Quadrature method and assigns 

the integrated value to the variable result. 

Alternatively, the same results can be achieved by the following statements: 

result = integ.simpson("integrand(real)", 0.0, 0.5) 

result = integ.simpsonRichardson("integrand(real)", 0.0, 0.5) 

result = integ.romberg("integrand(real)", 0.0, 0.5) 

result = integ.quadrature("integrand(real)", 0.0, 0.5) 

 

Example 2: 

Perform the following integration 

∫(𝑥 + 5) 𝑑𝑥 

Solution: 

poly = #1, 5#; 

 

The statement above creates the following polynomial: 

𝑝𝑜𝑙𝑦 = 𝑥 + 5 

and assigns the polynomial to the variable poly. 



 

ipoly = integ.integral(poly, 3.0); 

The statement above integrates the polynomial, adds a constant value of 3.0 to the integration 

and assigns the integrated polynomial to the variable ipoy.  The integrated polynomial is 

 

0.5𝑥2 + 5𝑥 + 3 

Example 3: 

Evaluate the double integral  

∬𝑐𝑜𝑠(𝑥)𝑐𝑜𝑠(𝑦)𝑑𝑥𝑑𝑦

Ω

 

over the triangle Ω in the x-y plane with vertices (0.0), (0.0, 𝜋 2⁄ ), (𝜋 2⁄ , 𝜋 2⁄ ). 

Solution: 

function real_integrand(real x, real y) 

{ 

   y = cos(x)*cos(y); 

   return y; 

} 

The code fragment above defines the function to be double integrated. 

integ.setFunction("integrand4(real, real)"); 

The statement above sets up the real_integrand function for integration. 

result = integ.tricub(0.0,0.0, 0.0,PI/2,PI/2,PI/2, 1e-6); 

 

The statement above performs a double integration over the triangle Ω in the x-y plane with 

vertices (0.0), (0.0, 𝜋 2⁄ ), (𝜋 2⁄ , 𝜋 2⁄ ) within an absolute error value of 1e-6 and assigns the 

integrated value to the variable result. 

 

5.4.3 Ordinary Differential Equation 

A classical ordinary differential equation (ODE) is a functional relation of the form 

𝐹(𝑡, 𝑥, 𝑥(1), ⋯ , 𝑥(𝑘)) = 0 

For unknown function 𝑥 ∈ 𝐶𝑘(𝐽), 𝐽 ⊆ ℝ and derivatives 



𝑥(𝑗)(𝑡) =
𝑑𝑗(𝑡)

𝑑𝑡𝑗
,      𝑗 ∈ ℕ𝑜 

where 𝑡 is the independent variable and 𝑥 the depended variable. The highest derivative 

appearing in 𝐹 is called the order of the differential equation.  A solution of the ODE is a 

function 𝜙 ∈ 𝐶𝑘(𝐼), where 𝐼 ⊆ 𝐽 is an interval such that  

𝐹(𝑡, 𝜙(𝑡), 𝜙1(𝑡)⋯𝜙𝑘(𝑡)) = 0        for all 𝑡 ∈ 𝐼 

The ODE Solver class contains two solver methods: Euler and Runge Kutta 4.  

All the functions contained in ODE Solver class are listed in the Appendix D. 

 

Example: 

Solve the following ODE 

𝑑2𝑦

𝑑𝑡2
= −32 

for the initial condition 𝑦(0) = 0 and 
𝑑𝑦

𝑑𝑡
(0) = 100. 

Solution: 

solver = import_java_class("library.analysis.ODE_Solver") 

The statement above imports the Integrator class and assigns to the pointer integ. 

function odefcn(real x) 

{ 

  return -32.0; 

} 

The code fragment above defines the ODE. 

ic = [0.0, 100.0]; 

The statement above sets up the initial condition. 

ye = solver.euler("odefcn(real x)", ic, 0.0, 7.0, 0.01); 

The statement above solves the ODE for the initial condition from 0.0 to 7.0 with the step size of 

0.01 using the Euler method and assigns the solution to the variable ye. 

yr = solver.rk4("odefcn(real x)", ic, 0.0, 7.0, 0.01); 



The statement above solves the ODE for the initial condition from 0.0 to 7.0 with the step size of 

0.01 using the Runge Kutta 4 method and assigns the solution to the variable yr. 

 

5.5 Estimation 

The Estimation library contains methods for curve fits and interpolation.  The Estimation library 

consists of four classes: Interpolator, Linear Regression, Polynomial Least Square, and All.  All 

the functions in the Estimation library are listed in Appendix E. 

5.5.1 Interpolation 

Interpolation is a method of constructing new data points within the range of a discrete set of 

known data points. 

Linear interpolation formula is given by  

𝑓1(𝑥) = 𝑓(𝑥0) +
𝑓(𝑥1) − 𝑓(𝑥0)

𝑥1 − 𝑥0
(𝑥 − 𝑥0) 

Lagrange interpolation polynomial is given by 

𝑃𝑛(𝑥) =∑
∏ (𝑥 − 𝑥𝑗)𝑗≠𝑖

∏ (𝑥𝑖 − 𝑥𝑗)𝑗≠𝑖

𝑛

𝑖=0

𝑦𝑖 

Newton interpolation formula is given by 

𝑃𝑛(𝑥) = 𝛼0 + (𝑥 − 𝑥0) ∙ [𝛼1 + (𝑥 − 𝑥1) ∙ [⋯ [𝛼𝑛−1 + 𝛼𝑛 ∙ (𝑥 − 𝑥1)]]] 

Neville’s algorithm is given by 

{
 
 

 
 Δ𝑗,𝑖+𝑗

left (𝑥) =
𝑥𝑖 − 𝑥

𝑥𝑗 − 𝑥𝑖+𝑗+1
[Δ𝑗+1,𝑖
left (𝑥) − Δ𝑗,𝑖

right(𝑥) ]

Δ𝑗,𝑖+𝑗
right (𝑥) =

𝑥𝑖+𝑗+1 − 𝑥

𝑥𝑗 − 𝑥𝑖+𝑗+1
[Δ𝑗+1,𝑖
left (𝑥) − Δ𝑗,𝑖

right(𝑥) ]

 

where 

{

Δ𝑗,𝑖
left(𝑥) = 𝑃𝑗

𝑖(𝑥) − 𝑃𝑗
𝑖−1(𝑥)

Δ𝑗,𝑖
right(𝑥) = 𝑃𝑗

𝑖(𝑥) − 𝑃𝑗+1
𝑖−1(𝑥)

 

where 
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𝑃𝑗
𝑖(𝑥) =

(𝑥 − 𝑥𝑖+𝑗)𝑃𝑗
𝑖−1(𝑥) + (𝑥 − 𝑥𝑖+𝑗)𝑃𝑗+1

𝑖−1(𝑥)

𝑥 − 𝑥𝑖+𝑗
 

The expression for cubic spline is given by 

𝑃𝑖(𝑥) = 𝑦𝑖−1𝐴𝑖(𝑥) + 𝑦𝑖𝐵𝑖(𝑥) + 𝑦𝑖−1
′′ 𝐶𝑖(𝑥) + 𝑦𝑖

′′𝐷𝑖(𝑥) 

where 

{
 
 

 
 𝐴𝑖(𝑥) =

𝑥𝑖 −  𝑥

𝑥𝑖 − 𝑥𝑖−1

𝐵𝑖(𝑥) =
𝑥 − 𝑥𝑖−1
𝑥𝑖 − 𝑥𝑖−1

 

 

𝑦𝑖−1
′′ =

𝑑2𝑃(𝑥)

𝑑𝑥2
|
𝑥=𝑥𝑖−1

 

 

𝑦𝑖
′′ =

𝑑2𝑃(𝑥)

𝑑𝑥2
|
𝑥=𝑥𝑖

 

 

{
 
 

 
 𝐶𝑖(𝑥) =

[𝐴𝑖(𝑥)
2 − 1]

6
(𝑥𝑖 − 𝑥𝑖−1)

2

𝐷𝑖(𝑥) =
[𝐵𝑖(𝑥)

2 − 1]

6
(𝑥𝑖 − 𝑥𝑖−1)

2

 

 

𝑑𝑃𝑖(𝑥)

𝑑𝑥
=
𝑑𝑃𝑖+1(𝑥)

𝑑𝑥
 

The Interpolator class contains Linear, Lagrange, Newton, Neville, and Spline interpolation 

methods.  All the functions contained in the Interpolator class are listed in Appendix E. 

Example 1: 

Given: 

𝑥 = (1900, 1910, 1920, 1930, 1940, 1950, 1960, 1970, 1980, 1990) 



and 

𝑦

= (75.995, 91.972, 105.711, 123.203, 131.669, 150.697, 179.323, 203.212, 226.505, 249.633) 

find the y value corresponding to 𝑥 = 1975. 

 

Solution: 

interpol = import_java_class("library.estimation.Interpolator"); 

The statement above imports the Interpolator class and assigns to the pointer interpol. 

x = 1900.0:10:1990; 

The statement above creates a vector whose elements are from 1900 to 1990 in the increments of 

10 and assigns the vector to the variable x. 

y = [75.995, 91.972, 105.711, 123.203, 131.669, 150.697, 179.323, 203.212, 

226.505, 249.633]; 

The statement above creates a vector with the given data and assigns the vector to the variable y. 

  lin = interpol.linear(t,p,1975.0); 

The statement above interpolates y for x value of 1975 using Liner interpolation and assigns the 

interpolated value to the variable lin. 

  sp = interpol.spline(t,p,1975.0); 

The statement above interpolates y for x value of 1975 using Spline interpolation and assigns the 

interpolated value to the variable sp. 

  lag = interpol.lagrange(t,p,1975.0);  

The statement above interpolates y for x value of 1975 using Lagrange interpolation and assigns 

the interpolated value to the variable lag. 

  nwt = interpol.newton(t,p,1975.0); 

The statement above interpolates y for x value of 1975 using Newton interpolation and assigns 

the interpolated value to the variable nwt. 

  nev = interpol.neville(t,p,1975.0); 

The statement above interpolates y for x value of 1975 using Neville interpolation and assigns 

the interpolated value to the variable nev. 



 

After setting up an interpolator, the interpolator can be repeatedly used to interpolate for 

different x values. 

Example 2: 

For the x and y values from Example 1, compute interpolated values for x = 1945,  x = 1963, x = 

1978, and x = 1987 using Linear interpolation method. 

Solution: 

interpol.setLinear(t,p); 

The statement above sets up the interpolator to use Linear method. 

l_1945 = interpol.interpolate(1945.0); 

The statement above interpolates y for x value of 1945 and assigns the interpolated value to the 

variable l_1945. 

l_1963 = interpol.interpolate(1963.0); 

The statement above interpolates y for x value of 1963 and assigns the interpolated value to the 

variable l_1963. 

l_1978 = interpol.interpolate(1978.0); 

The statement above interpolates y for x value of 1978 and assigns the interpolated value to the 

variable l_1978. 

l_1987 = interpol.interpolate(1987.0); 

The statement above interpolates y for x value of 1987 and assigns the interpolated value to the 

variable l_1987. 

 

5.5.2 Linear Regression 

Regression analysis estimates the conditional expectation of the dependent variable given the 

independent variables – that is, the average value of the dependent variable when the 

independent variables are fixed. In regression analysis, it is also of interest to characterize the 

variation of the dependent variable around the regression function which can be described by a 

probability distribution. 

The method of least-square fit is a standard approach in regression analysis to the approximate 

solution of overdetermined systems, i.e., sets of equations in which there are more equations than 

unknowns. The least-square estimation is obtained by minimizing function 𝑠(𝒑) is given as  



𝑠(𝒑) =∑
[𝑦 − 𝐹(𝑥, 𝒑)]2

𝜎𝑖
2

𝑁

𝑖=1

 

with respect to the parameter 𝒑. "Least squares" means that the overall solution minimizes the 

sum of the squares of the errors made in the results of every single equation.  Parameters of a 

functional dependence of the variable 𝑦 are determined from the observable quantities 𝑥. 

A linear regression is a least-square fit with a linear function of single variable.  Linear 

regression attempts to model the relationship between two variables by fitting a linear equation 

to observed data. One variable is considered to be an explanatory variable, and the other is 

considered to be a dependent variable. A numerical measure of association between two 

variables is the correlation coefficient, which is a value between -1 and 1 indicating the strength 

of the association of the observed data for the two variables. A linear regression line has an 

equation of the form 

𝑦 = 𝑎 + 𝑏𝑥  

where 𝑥 is the explanatory variable and 𝑦 is the dependent variable. The slope of the line is 𝑏, 

and 𝑎 is the intercept (the value of y when x = 0). 

All the functions contained in the Least-Square Fit class are listed in Appendix E. 

 

 

Example: 

Fit a straight line to the x and y values in the Table below: 

x y 

1 0.5 

2 2.5 

3 2.0 

4 4.0 

5 3.5 

6 6.0 

7 5.5 

 



Solution: 

lr = import_java_class("library.estimation.LinearRegression"); 

The statement above imports the Linear Regression class and assigns to the pointer lr. 

x1 = 1.0:7.0; 

The statement above creates a vector whose elements are from 1.0 to 7.0 with increments of 1.0. 

y1 = [0.5, 2.5, 2.0, 4.0, 3.5, 6.0, 5.5]; 

The statement above creates a vector with the given elements. 

p1 = lr.linearRegression(x1, y1); 

The statement above computes a polynomial using linear regression and assigns the polynomial 

to the variable p1. 

r1 = lr.getCorrelationCoefficient(); 

The statement above computes the correlation coefficient of the linear regression and assigns the 

coefficient to the variable r1. 

 

5.5.3 Polynomial Regression 

Polynomial regression are statistical methods for estimating an underlying polynomial that 

describes observations.  In a polynomial fit, the fit function is a polynomial of degree m.  The 

parameters are numbered starting from zero.  The number of free parameters is m+1. 

Approximating a function 𝑍(𝑡)with a polynomial 

�̂�(𝑡) = ∑ 𝑎𝑖𝑡
𝑖

𝑚+1

𝑖=0

 

where hat (^) denotes the estimate.  Polynomial regression models are usually fit using the 

method of least squares. 

All the functions contained in the Polynomial Regression class are listed in Appendix E. 

 

 

 

 



Example: 

Fit a second-order polynomial to the data in the table below: 

x y 

0 2.1 

1 7.7 

2 13.6 

3 27.2 

4 40.9 

5 61.1 

 

Solution: 

pr = import_java_class("library.estimation.PolynomialRegression"); 

The statement above imports the Polynomial Regression class and assigns to the pointer pr. 

x1 = 0.0:5.0; 

The statement above creates a vector whose elements are from 0.0 to 5.0 with increments of 1.0. 

y1 = [2.1, 7.7, 13.6, 27.2, 40.9, 61.1]; 

The statement above creates a vector with the given elements. 

p1 = pr.polynomialLSFit(x1, y1, 2); 

The statement above computes the coefficient of a polynomial using the least square method and 

assigns the corresponding polynomial to the variable p1. 

 

5.6 Stochastic 

The Stochastic library contains methods related to statistics and probability.  The Stochastic 

library contains the following classes: 

1. Histogram 

2. Probability Distribution 

The Stochastic library is documented in Appendix F. 



5.6.1 Statistics  

Given a random variable whose values are a set of data points, x1, x2, … , xn, the kth order 

moment of the set is defined as 

𝑀𝑘 =
1

𝑛
∑𝑥𝑖

2

𝑛

𝑖=1

 

The moment of the first order is the mean or the average defined as 

�̅� = 𝑀1 =
1

𝑛
∑𝑥𝑖

𝑛

𝑖=1

 

The central moment of kth order is defined by 

𝑚𝑘 =
1

𝑛
∑(𝑥𝑖 − �̅�)

𝑘

𝑛

𝑖=1

 

The variance of a set is defined by 

𝑣𝑎𝑟 =
1

𝑛 − 1
∑(𝑥𝑖 − �̅�)

2

𝑛

𝑖=1

 

The standard deviation is defined by 

𝜎 = √𝑣𝑎𝑟 = √
1

𝑛 − 1
∑(𝑥𝑖 − �̅�)2
𝑛

𝑖=1

 

The skewness is defined by 

𝑠𝑘𝑒𝑤 =
1

(𝑛 − 1)(𝑛 − 2)
∑(𝑥𝑖 − �̅�)

3

𝑛

𝑖=1

 

The kurtosis is defined by 

𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
𝑛 + 1

(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)
∑(

𝑥𝑖 − �̅�

𝑠
)
4

−
3(𝑛 − 1)2

(𝑛 − 2)(𝑛 − 3)

𝑛

𝑖=1

 

 



5.6.1.1 Histogram: 

A mathematical histogram which is a function that counts the number of observations that fall 

into each of the disjoint categories (known as bins).  To construct a histogram, the first step is to 

divide the entire range of values into a series of intervals—and then count how many values fall 

into each interval. The bins are usually specified as consecutive, non-overlapping intervals of a 

variable. The bins (intervals) must be adjacent, and are usually equal size.  A histogram is 

defined by three main parameters: 𝑥𝑚𝑖𝑛, the minimum of all values accumulated into the 

histogram; 𝑤, the bin width; and 𝑛, the number of bins.  The ith bin of a histogram is the interval 

[𝑥𝑚𝑖𝑛 + (𝑖 − 1)𝑤, 𝑥𝑚𝑖𝑛 + 𝑖𝑤).  The bin contents of a histogram is the number of times a value 

falls within each bin interval.  The bin width is computed as 

𝑤 =
𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

𝑛
, 

where 𝑥𝑚𝑎𝑥is the maximum accumulated values. 

The Histogram class implements a mathematical histogram. All the functions contained in the 

Histogram class are listed in Appendix F. 

 

Example: 

Divide the data in the table below into 5 equal length intervals between 140 and 190 cm and 

create a histogram. 

162 168 177 147 

189 171 173 168 

178 184 165 173 

179 166 168 165 

Compute the following attributes from the histogram: 

count, bin width, minimum, maximum, average, standard deviation, skewness, and kurtosis. 

Solution: 

hist = import_java_class("library.stochastic.Histogram"); 

The statement above imports the Histogram class and assigns it to the pointer hist. 

hist.setHistogram(140.0, 190.0, 5); 

The above statement sets up the histogram with 5 bins and interval between 140.0 and 190.0. 



data = [162, 168, 177, 147, 189, 171, 173, 168, 178, 184, 165, 173, 179, 

166, 168, 165]; 

The above statement creates a vector with the given data and assigns it to the variable data. 

hist.processData(data); 

The above statement creates a mathematical using the data. 

c = hist.count(); 

The above statement counts the number of data and assigns the result in the variable c. 

w = hist.binWidth(); 

The above statement computes the bin width and assigns the result in the variable w. 

min = hist.minimum(); 

The above statement computes the minimum value of the data and assigns the result in the 

variable min. 

max = hist.maximum(); 

The above statement computes the maximum value of the data and assigns the result in the 

variable max. 

ave = hist.average(); 

The above statement computes the average value of the data and assigns the result in the variable 

ave. 

sd = hist.standardDeviation(); 

The above statement computes the standard deviation of the data and assigns the result in the 

variable sd. 

skew = hist.skewness(); 

The above statement computes the skewness of the data and assigns the result in the variable 

skew. 

k = hist.kurtosis(); 

The above statement computes the kurtosis of the data and assigns the result in the variable k. 

 

 



5.6.2 Probability 

A probability density function defines the probability of finding a continuous random variable 

within an infinitesimal interval.  Formally, if X is a continuous random variable, then it has a 

probability density function f(x), and therefore its probability of falling into a given interval, say 

[a, b] is given by the integral 

𝑃𝑟𝑜𝑏[𝑎 ≤ 𝑋 ≤ 𝑏] = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

 

A continuous cumulative distribution function is defined as 

𝐹(𝑥) = 𝜇(−∞, 𝑥] = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

−∞

 

The moment of kth order for a probability density function 𝑓(𝑥) is defined by 

𝑀𝑘 = ∫𝑥
𝑘𝑓(𝑥)𝑑𝑥 

The mean or average of the distribution is 

𝜇 = 𝑀1 = ∫𝑥𝑓(𝑥)𝑑𝑥 

The central moment of the kth order defined by  

𝑚𝑘 = ∫(𝑥 − 𝜇)
𝑘𝑓(𝑥)𝑑𝑥 

The skewness is defined by 

𝑠𝑘𝑒𝑤 =
∫𝑥3𝑓(𝑥)𝑑𝑥

𝜎3
 

The kurtosis is defined by 

𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
∫𝑥4𝑓(𝑥)𝑑𝑥

𝜎4
− 3 

 

 

 



5.6.2.1 Probability Distributions 

The Stochastic library contains the following probability distributions: 

1. Uniform Distribution 

2. Triangular Distribution 

3. Normal Distribution 

4. Log Normal Distribution 

5. Student Distribution 

6. Gamma Distribution 

7. Chi-Squared Distribution 

8. Exponential Distribution 

9. Laplace Distribution 

10. Beta Distribution 

11. Fisher Snedecor Distribution 

12. Fisher Tippett Distribution 

13. Weibull Distribution 

14. Cauchy Distribution 

15. Histogrammed Distribution 

16. All Distribution 

 

5.6.2.2 Uniform Distribution 

The continuous uniform distribution or rectangular distribution is a family of symmetric 

probability distributions such that for each member of the family, all intervals of the same length 

on the distribution's support are equally probable. The support is defined by the two parameters, 

a and b, which are its minimum and maximum values. 

 

 

 

 

 

 

 

 



Properties of the uniform distribution is given in the table below: 

Property Value 
Notation 𝒰(𝑎, 𝑏) 
Parameters  −∞ < 𝑎 < 𝑏 <  +∞ 

Support 𝑥 ∈ [𝑎, 𝑏] 
Probability density function 

{

1

𝑏 − 𝑎
     for 𝑎 ≤ 𝑥 ≤ 𝑏

0                otherwise 

 

Distribution function 

{
 
 

 
 

0     for    𝑥 < 𝑎

𝑥 − 𝑎

𝑏 − 𝑎
    for    𝑎 ≤ 𝑥 < 𝑏

1    for    𝑥 > 𝑏

 

Mean 1

2
(𝑎 + 𝑏) 

Median 1

2
(𝑎 + 𝑏) 

Mode Any value in (𝑎, 𝑏) 

Variance 1

12
(𝑏 − 𝑎)2 

Skewness 0 

Kurtosis 
−
6

5
 

 

Example: 

Generate a uniformly distributed random number between -1 and 1. 

Solution: 

dist = import_java_class("library.stochastic.ProbabilityDistribution"); 

The statement above imports the Probability Distribution class and assigns it to the pointer dist. 

r = dist.uniform(-1.0,1.0); 

The above statement computes a random number based on a uniform distribution ranged 

between of -1.0 to 1.0 and assigns the random value to the variable r. 

Alternatively, the same result can be obtained using the following statements. 

dist.setUniform(-1.0, 1.0); 

r = dist.random(); 



5.6.2.3 Triangular Distribution 

A triangular distribution is a continuous probability distribution with a probability density 

function shaped like a triangle.  It is defined by three values: the minimum value a, the maximum 

value b,and the peak value c, where 𝑎 < 𝑏 and 𝑎 ≤ 𝑐 ≤ 𝑏. 

Properties of the triangular distribution is given in the table below: 

Property Value 
Parameters  𝑎:   𝑎 ∈ (−∞,+∞) 

𝑏:   𝑎 < 𝑏 

𝑐:   𝑎 ≤ 𝑐 ≤ 𝑏 

Support [𝑎, 𝑏] 
Probability density function (PDF) 

{
 
 
 
 
 
 

 
 
 
 
 
 

0                   for 𝑥 < 𝑎

2(𝑥 − 𝑎)

(𝑏 − 𝑎)(𝑐 − 𝑎)
     for 𝑎 ≤ 𝑥 ≤ 𝑐

2

𝑏 − 𝑎
             for 𝑥 = 𝑐

2(𝑏 − 𝑥)

(𝑏 − 𝑎)(𝑏 − 𝑐)
     for 𝑐 ≤ 𝑥 ≤ 𝑏

0                       for 𝑥 > 𝑏

 

Cumulative Distribution function 

(CDF) 

{
 
 
 
 
 
 

 
 
 
 
 
 

0                          for 𝑥 ≤ 𝑎

(𝑥 − 𝑎)2

(𝑏 − 𝑎)(𝑐 − 𝑎)
         for 𝑎 < 𝑥 ≤ 𝑐

1 −
(𝑏 − 𝑥)2

(𝑏 − 𝑎)(𝑏 − 𝑐)
    for 𝑐 < 𝑥 < 𝑏

2(𝑏 − 𝑥)

(𝑏 − 𝑎)(𝑏 − 𝑐)
           for 𝑐 ≤ 𝑥 ≤ 𝑏

1                            for 𝑥 ≥ 𝑏

 

Mean 𝑎 + 𝑏 + 𝑐

3
 

Median 

{
  
 

  
 
𝑎 + √

(𝑏 − 𝑎)(𝑐 − 𝑎)

2
     for 𝑐 ≥

𝑎 + 𝑏

2

𝑏 − √
(𝑏 − 𝑎)(𝑐 − 𝑎)

2
     for 𝑐 ≥

𝑎 + 𝑏

2

 

Mode 𝑐 

Variance 𝑎2 + 𝑏2 + 𝑐2 − 𝑎𝑏 − 𝑎𝑐 − 𝑏𝑐

18
 



Skewness √2(𝑎 + 𝑏 − 2𝑐)(2𝑎 − 𝑏 − 𝑐)(𝑎 − 2𝑏 + 𝑐)

5(𝑎2 + 𝑏2 + 𝑐2 − 𝑎𝑏 − 𝑎𝑐 − 𝑏𝑐)
3
2

 

Kurtosis −3/5 

 

Example: 

Generate a random number using a triangular distribution with minimum value = 1, maximum 

value = 8 and peak value = 3. 

Solution: 

dist = import_java_class("library.stochastic.ProbabilityDistribution"); 

The statement above imports the Probability Distribution class and assigns it to the pointer dist. 

r = dist.triangular(1.0, 8.0, 3.0); 

The above statement computes a random number based on a triangular distribution with 

minimum value = 1, maximum value = 8 and peak value = 3 and assigns the random value to the 

variable r. 

Alternatively, the same result can be obtained using the following statements. 

dist.setTriangular(1.0, 8.0, 3.0); 

r = dist.random(); 

 

5.6.2.4 Normal Distribution 

The normal distribution is the most important probability distribution. Normal distributions are 

symmetric and have bell-shaped density curves with a single peak. Most other distributions tend 

towards the normal distribution when some of their parameters become large.  In normal 

distribution, two quantities must be specified: the mean 𝜇, where the peak of the density occurs, 

and the standard deviation 𝜎, which indicates the spread of the bell curve. 

All normal density curves satisfy the following property which is often referred to as the 

Empirical Rule.  

68% of the observations fall within 1 standard deviation of the mean, that is, between 𝜇 − 𝜎 and 

𝜇 + 𝜎.  

95% of the observations fall within 2 standard deviations of the mean, that is, between 𝜇 − 2𝜎 

and 𝜇 + 2𝜎.  



99.7% of the observations fall within 3 standard deviations of the mean, that is, between 𝜇 − 3𝜎 

and 𝜇 + 3𝜎.  

Thus, for a normal distribution, almost all values lie within 3 standard deviations of the mean. 

Properties of the normal distribution is given in the table below: 

Property Value 
Notation 𝒩(𝜇, 𝜎) 
Parameters  𝜇 ∈ ℝ 

0 < 𝜎2 < +∞ 

Support 𝑥 ∈ ℝ 

Probability density function (PDF) 1

√2𝜋𝜎2 
𝑒
(𝑥−𝜇)2

2𝜎2  

Cumulative Distribution function 

(CDF) 

1

2
[1 + erf (

𝑥 − 𝜇

𝜎√2
) ] 

Mean 𝜇 

Median 𝜇 

Mode 𝜇 

Variance 𝜎2 

Skewness 0 

Kurtosis 0 

 

Example: 

Generate a random number using a normal distribution with mean value = 0, standard deviation 

= 0.25. 

Solution: 

dist = import_java_class("library.stochastic.ProbabilityDistribution"); 

The statement above imports the Probability Distribution class and assigns it to the pointer dist. 

r = dist.normal(0.0, 0.25); 

The above statement computes a random number based on a triangular distribution with mean 

value = 0, standard deviation = 0.25. 

Alternatively, the same result can be obtained using the following statements. 

dist.setNormal(0.0, 0.25); 

r = dist.random(); 

 



5.6.2.5 Log Normal Distribution 

A log-normal (or lognormal) distribution is a continuous probability distribution of a random 

variable whose logarithm is normally distributed. Thus, if the random variable 𝑋 is log-normally 

distributed, then 𝑌 = ln (𝑋) has a normal distribution. Likewise, if 𝑌 has a normal distribution, 

then  𝑋 = exp(𝑌) has a log-normal distribution. A random variable which is log-normally 

distributed takes only positive real values. The distribution is occasionally referred to as the 

Galton distribution or Galton's distribution, after Francis Galton.  

A log-normal process is the statistical realization of the multiplicative product of many 

independent random variables, each of which is positive. This is justified by considering the 

central limit theorem in the log domain. The log-normal distribution is the maximum entropy 

probability distribution for a random variate 𝑋 for which the mean and variance of ln (𝑋) are 

specified.  

Properties of the normal distribution is given in the table below: 

Property Value 
Notation ln 𝒩(𝜇, 𝜎2) 
Parameters  𝜇 ∈ ℝ              -- location 

0 < 𝜎2 < +∞ -- scale 

Support 𝑥 ∈ (0, +∞) 
Probability density function (PDF) 1

𝑥𝜎√2𝜋 
𝑒
−
(ln 𝑥−𝜇)2

2𝜎2  

Cumulative Distribution function 

(CDF) 

1

2
[1 + erf (

ln 𝑥 − 𝜇

√2𝜎
) ] 

Mean 𝑒𝜇+𝜎
2 2⁄  

Median 𝑒𝜇 

Mode 𝑒𝜇−𝜎
2
 

Variance (𝑒𝜎
2
− 1)𝑒2𝜇+𝜎

2
 

Skewness (𝑒𝜎
2
+ 2)√𝑒𝜎

2
− 1 

Kurtosis 𝑒4𝜎
2
+ 2𝑒3𝜎

2
+ 3𝑒2𝜎

2
− 6 

 

Example: 

Example for the normal distribution can be used for the log-normal distribution. 

 

5.6.2.6 Student’s T Distribution 

Student's t-distribution (or simply the t-distribution) is any member of a family of continuous 

probability distributions that arises when estimating the mean of a normally distributed 

population in situations where the sample size is small and population standard deviation is 

unknown developed by William Sealy Gosset under the pseudonym Student. Whereas a normal 

distribution describes a full population, t-distributions describe samples drawn from a full 



population; accordingly, the t-distribution for each sample size is different, and the larger the 

sample, the more the distribution resembles a normal distribution. 

The t-distribution plays a role in a number of widely used statistical analyses, including the 

Student's t-test for assessing the statistical significance of the difference between two sample 

means, the construction of confidence intervals for the difference between two population means, 

and in linear regression analysis. The Student's t-distribution also arises in the Bayesian analysis 

of data from a normal family. 

The t-distribution is symmetric and bell-shaped, like the normal distribution, but has heavier 

tails, meaning that it is more prone to producing values that fall far from its mean. This makes it 

useful for understanding the statistical behavior of certain types of ratios of random quantities, in 

which variation in the denominator is amplified and may produce outlying values when the 

denominator of the ratio falls close to zero. The Student's t-distribution is a special case of the 

generalized hyperbolic distribution. 

Properties of the Student's t-distribution distribution is given in the table below: 

Property Value 
Parameters  𝑛 

(a positive integer) 

Support (−∞,+∞) 
Probability density function (PDF) 

1

√𝑛𝐵 (
𝑛
2
,
1
2
)
(1 +

𝑡2

𝑛
)

−
𝑛+1
2

 

Cumulative Distribution function 

(CDF) 

{
  
 

  
 1 + 𝐵 (

𝑛
𝑛 + 𝑥2

;
𝑛
2
,
1
2
)

2
 for 𝑥 ≥ 0

1 − 𝐵 (
𝑛

𝑛 + 𝑥2
;
𝑛
2
,
1
2
)

2
 for < 0

 

Mean 0 

Variance 𝑛

𝑛−2
 for 𝑛 > 0 

Undefined otherwise 

Skewness 0 

Kurtosis 6

𝑛−4
 for 𝑛 > 4 

Undefined otherwise 

 

Example: 

Generate a random number using a student’s t-distribution with degrees-of-freedom = 8. 

Solution: 

dist = import_java_class("library.stochastic.ProbabilityDistribution"); 



The statement above imports the Probability Distribution class and assigns it to the pointer dist. 

r = dist.student(8.0); 

The above statement computes a random number based on a triangular distribution with degrees-

of-freedom = 8. 

Alternatively, the same result can be obtained using the following statements. 

dist.setStudent(8); 

r = dist.random(); 

 

5.6.2.7 Gamma Distribution 

The gamma distribution is a two-parameter family of continuous probability distributions. The 

common exponential distribution and chi-squared distribution are special cases of the gamma 

distribution. There are three different parameterizations in common use: 

1. With a shape parameter k and a scale parameter θ. 

2. With a shape parameter α = k and an inverse scale parameter β = 1/θ, called a rate 

parameter. 

3. With a shape parameter k and a mean parameter μ = k/β. 

In each of these three forms, both parameters are positive real numbers. 

Properties of the normal distribution is given in the table below: 

Property Value 
Parameters  𝑘 > 0   shape 𝛼 > 0   shape

𝜃 > 0   scale 𝛽 > 0   scale
 

Support 𝑥 ∈ (0, +∞) 
Probability density function (PDF) 𝑥𝛼−1

𝛽𝛼Γ(α)
𝑒
−
𝑥
𝛽  

Cumulative Distribution function 

(CDF) 
(
𝑥

𝛽
, 𝛼) 

Mean 𝛼𝛽 

Variance 𝛼𝛽2 

Skewness 2

√𝛼
 

Kurtosis 6

𝛼
 

 

Example: 

Generate a random number using a gamma distribution with shape value = 9.56, scale value = 

38.94. 

https://en.wikipedia.org/wiki/Parametrization


Solution: 

dist = import_java_class("library.stochastic.ProbabilityDistribution"); 

The statement above imports the Probability Distribution class and assigns it to the pointer dist. 

r = dist.gamma(9.56, 38.94); 

The above statement computes a random number based on a gamma distribution with shape 

value = 9.56, scale value = 38.94. 

Alternatively, the same result can be obtained using the following statements. 

dist.setGamma(9.56, 38.94); 

r = dist.random(); 

 

5.6.2.8 Chi-Squared Distribution 

The chi-squared distribution (also chi-square or χ²-distribution) with k degrees of freedom is 

the distribution of a sum of the squares of k independent standard normal random variables. It is 

a special case of the gamma distribution. 

Properties of the Chi-Squared distribution is given in the table below: 

Property Value 
Notation 𝜒2(𝑘) or 𝜒𝑘

2 

Parameters  𝑘 ∈ ℕ > 0 (known as “degrees-of-

freedom”) 

Support 𝑥 ∈ [0, +∞) 
Probability density 

function (PDF) 

1

2
𝑘
2Γ (

𝑘
2
)
𝑥
𝑘
2
−1𝑒−

𝑥
2 

Cumulative Distribution 

function (CDF) 

1

Γ (
𝑘
2
)
𝛾 (
𝑘

2
,
𝑥

2
) 

Mean 𝑘 

Median 
≈ 𝑘 (1 −

2

9𝑘
)
3

 

Mode max{𝑘 − 2,0} 
Variance 2𝑘 

Skewness √8 𝑘⁄  

Kurtosis 12

𝑘
 

 

 

 



Example: 

Example for the student’s t-distribution can be used for the chi-squared distribution. 

 

5.6.2.9  Exponential Distribution 

The exponential distribution (a.k.a. negative exponential distribution) is the probability 

distribution that describes the time between events in a Poisson process, i.e. a process in which 

events occur continuously and independently at a constant average rate. It is a specific case of 

the gamma distribution. It is the continuous analogue of the geometric distribution, and it has the 

key property of being memory less. 

Properties of the exponential distribution is given in the table below: 

Property Value 
Notation  

Parameters  𝜆 > 0 rate, or inverse scale 

Support 𝑥 ∈ [0, +∞) 
Probability density 

function (PDF) 
𝜆𝑒−𝜆𝑥 

Cumulative Distribution 

function (CDF) 
1 − 𝑒−𝜆𝑥 

Mean 𝜆−1(= 𝛽) 
Median 𝜆−1ln(2) 
Mode 0 

Variance 6 

Skewness √8 𝑘⁄  

Kurtosis 12

𝑘
 

 

Example: 

Generate a random number using an exponential distribution with rate = 0.5. 

Solution: 

dist = import_java_class("library.stochastic.ProbabilityDistribution"); 

The statement above imports the Probability Distribution class and assigns it to the pointer dist. 

r = dist.exponential(0.5); 

The above statement computes a random number based on an exponential distribution with rate = 

0.5. 

Alternatively, the same result can be obtained using the following statements. 

https://en.wikipedia.org/wiki/Memoryless


dist.setExponential(0.5); 

r = dist.random(); 

 

5.6.2.10  Laplace  Distribution 

The Laplace distribution is a continuous probability distribution named after Pierre-Simon 

Laplace. It is also sometimes called the double exponential distribution, because it can be 

thought of as two exponential distributions (with an additional location parameter) spliced 

together back-to-back, although the term 'double exponential distribution' is also sometimes used 

to refer to the Gumbel distribution. The difference between two independent identically 

distributed exponential random variables is governed by a Laplace distribution. Increments of 

Laplace motion or a variance gamma process evaluated over the time scale also have a Laplace 

distribution. 

Properties of the Laplace distribution is given in the table below: 

Property Value 
Notation  

Parameters  𝜇 location (real) 

𝑏 > 0 scale (real) 

Support 𝑥 ∈ (−∞,+∞) 
Probability density 

function (PDF) 

1

2𝑏
exp (−

|𝑥 − 𝜇|

𝑏
) 

Cumulative Distribution 

function (CDF) 

{
 
 

 
 
1

2
exp (−

𝑥 − 𝜇

𝑏
)          if 𝑥 < 𝜇

1 −
1

2
exp (−

𝑥 − 𝜇

𝑏
)    if 𝑥 ≥ 𝜇

 

Mean 𝜇 

Median 𝜇 

Mode 𝜇 

Variance 2𝑏2 

Skewness 0 

Kurtosis 3 

 

Example: 

Generate a random number using a Laplace distribution with location = 0.0 and scale = 1.0. 

Solution: 

dist = import_java_class("library.stochastic.ProbabilityDistribution"); 

The statement above imports the Probability Distribution class and assigns it to the pointer dist. 

r = dist.laplace(0.0, 1.0); 



The above statement computes a random number based on a Laplace distribution with location = 

0.0 and scale = 1.0. 

Alternatively, the same result can be obtained using the following statements. 

dist.setLaplace(0.0, 1.0); 

r = dist.random(); 

 

5.6.2.11  Beta Distribution 

The Beta distribution is a family of continuous probability distributions defined on the interval 

[0, 1] parameterized by two positive shape parameters, denoted by α and β, that appear as 

exponents of the random variable and control the shape of the distribution. 

Properties of the Beta distribution is given in the table below: 

Property Value 
Notation 𝐵𝑒𝑡𝑎(𝛼, 𝛽) 
Parameters  𝛼 > 0 shape (real) 

𝛽 > 0 shape (real) 

Support 𝑥 ∈ (0,1) 
Probability density function (PDF) 𝑥𝛼−1(1 − 𝑥)𝛽−1

𝐵(𝛼, 𝛽)
 

Cumulative Distribution function 

(CDF) 

𝐼𝑥(𝛼, 𝛽) 

Mean 𝐸[𝑋] =
𝛼

𝛼 + 𝛽
 

𝐸[𝑙𝑛𝑋] = 𝜓(𝛼) − 𝜓(𝛼 + 𝛽) 
Median 𝐼1

2

[−1](𝛼, 𝛽) (in general) 

≈
𝛼 −

1
3

𝛼 + 𝛽 −
2
3

   for 𝛼, 𝛽 > 1 

Mode 𝛼 − 1

𝛼 + 𝛽 − 2
   for 𝛼, 𝛽 > 1 

Variance 
𝑣𝑎𝑟[𝑥] =

𝛼𝛽

(𝛼 + 𝛽)2(𝛼 + 𝛽 + 1)
 

 

𝑣𝑎𝑟[𝑙𝑛𝑋] = 𝜓1(𝛼) − 𝜓1(𝛼 + 𝛽) 
Skewness 2(𝛽 − 𝛼)√𝛼 + 𝛽 + 2

(𝛼 + 𝛽 + 2)√𝛼𝛽
 

Kurtosis 6[(𝛼 − 𝛽)2(𝛼 + 𝛽 + 1) − 𝛼𝛽(𝛼 + 𝛽 + 2)]

𝛼𝛽(𝛼 + 𝛽 + 2)(𝛼 + 𝛽 + 3)
 

 

 

 

https://en.wikipedia.org/wiki/Parametrization


Example: 

Generate a random number using a beta distribution with 𝛼 = 2.0 and 𝛽 = 3.0. 

Solution: 

dist = import_java_class("library.stochastic.ProbabilityDistribution"); 

The statement above imports the Probability Distribution class and assigns it to the pointer dist. 

r = dist.beta(2.0, 3.0); 

The above statement computes a random number based on a beta distribution with 𝛼 = 2.0 and 

𝛽 = 3.0. 

Alternatively, the same result can be obtained using the following statements. 

dist.setBeta(2.0, 3.0); 

r = dist.random(); 

 

5.6.2.12    Fisher-Snedecor Distribution 

The Fisher–Snedecor distribution (after Ronald Fisher and George W. Snedecor) , also known 

as Snedecor's F distribution or the F-distribution is a continuous probability distribution. 

The F-distribution arises frequently as the null distribution of a test statistic, most notably in the 

analysis of variance. 

Properties of the Fisher–Snedecor distribution is given in the table below: 

Property Value 
Parameters  𝑛, 𝑑 > 0 deg of freedom 

Support [0, +∞) 
Probability density 

function (PDF) √
(𝑛𝑥)𝑛𝑑𝑑

(𝑛𝑥 + 𝑑)𝑛 + 𝑑

𝑥𝐵 (
𝑛
2
,
𝑑
2
)

 

Cumulative Distribution 

function (CDF) 
𝐹(𝑥) = 𝐼 𝑛𝑥

𝑛𝑥+𝑑
(
𝑛

2
,
𝑑

2
) 

Mean 𝑑

𝑑−2
 for 𝑑 > 2 

Undefined otherwise 

Mode 𝑛−2

𝑛

𝑑

𝑑+2
     for 𝑑 > 2 

Variance 2𝑑2(𝑛+𝑑−2)

𝑛(𝑑−𝑛)2(𝑑−4)
 for 𝑑 > 4 

Undefined otherwise 

Skewness (2𝑛+𝑑−2)√8(𝑑−4)

(𝑑−6)√𝑛(𝑛+𝑑−2)
  for 𝑑 > 6 

Undefined otherwise 



Kurtosis 3 + 12
𝑛(5𝑑−22)(𝑛+𝑑−2)+(𝑑−4)(𝑑−2)2

𝑛(𝑑−6)(𝑑−8)(𝑛+𝑑−2)
 for 

𝑑 > 8 

Undefined otherwise 

 

Where, 𝐵 is the Beta function defined in terms of Gamma function (Γ) as   

𝐵(𝑛, 𝑑) =
Γ(𝑛)Γ(𝑑)

Γ(𝑛 + 𝑑)
 

 

Example: 

Generate a random number using a Fisher–Snedecor distribution with degrees-of-freedom, n = 

10 and degrees-of-freedom, d = 15. 

Solution: 

dist = import_java_class("library.stochastic.ProbabilityDistribution"); 

The statement above imports the Probability Distribution class and assigns it to the pointer dist. 

r = dist.beta(10, 15); 

The above statement computes a random number based on a Fisher–Snedecor distribution with 

degrees-of-freedom, n = 10 and degrees-of-freedom, d = 15. 

Alternatively, the same result can be obtained using the following statements. 

dist.setFisherSnedecor(10, 15); 

r = dist.random(); 

 

5.6.2.13    Fisher Tippett Distribution 

the Fisher–Tippett distribution, named after Ronald Fisher and L. H. C. Tippett, also known as 

generalized extreme value (GEV) distribution is a family of continuous probability 

distributions developed within extreme value theory to combine the Gumbel, Fréchet and 

Weibull families also known as type I, II and III extreme value distributions. By the extreme 

value theorem the GEV distribution is the only possible limit distribution of properly normalized 

maxima of a sequence of independent and identically distributed random variables. 

 

 

https://en.wikipedia.org/wiki/Gumbel_distribution
https://en.wikipedia.org/wiki/Fr%C3%A9chet_distribution
https://en.wikipedia.org/wiki/Weibull_distribution


Properties of the Fisher–Tippett distribution is given in the table below: 

Property Value 
Notation 𝐺𝐸𝑉(𝜇, 𝜎, 𝜉) 
Parameters  𝜇 ∈ ℝ -- location, 

𝜎 > 0 -- scale, 

𝜉 ∈ ℝ -- shape. 

Support 𝑥 ∈ [𝜇 − 𝜎 𝜉⁄  , +∞)   when 𝜉 > 0 

𝑥 ∈ (−∞,+∞)             when 𝜉 = 0 

𝑥 ∈ (−∞, 𝜇 − 𝜎 𝜉⁄ )   when 𝜉 < 0 

Probability density 

function (PDF) 

1

𝜎
𝑡(𝑥)𝜉+1𝑒−𝑡(𝑥), 

 

where 

𝑡(𝑥) =  

{
 
 

 
 
(1 + (

𝑥 − 𝜇

𝜎
) 𝜉)

−
1
𝜉
    if 𝜉 ≠ 0

𝑒−(𝑥−𝜇) 𝜎⁄                     if 𝜉 = 0

 

Cumulative Distribution 

function (CDF) 
𝑒−𝑡(𝑥),    for 𝑥 ∈ 𝑟𝑎𝑛𝑔𝑒  

Mean 

{
 
 

 
 𝜇 + 𝜎

Γ(1 − 𝜉) − 1 

𝜉
   if 𝜉 ≠ 0, 𝜉 = 1,

𝜇 + 𝜎𝛾               if 𝜉 = 0,

∞                        if 𝜉 ≥ 1,

 

 

Where 𝛾 is Euler’s constant. 

Median 

{
 

 𝜇 + 𝜎
(𝑙𝑛2)−𝜉 − 1

𝜉
   if 𝜉 ≠ 0,

𝜇 − 𝜎𝑙𝑛 𝑙𝑛2                if 𝜉 ≠ 0.

 

Mode 

{
 

 𝜇 + 𝜎
(1 + 𝜉)−𝜉 − 1

𝜉
   if 𝜉 ≠ 0,

𝜇                                      if 𝜉 ≠ 0.

 

Variance 

{
  
 

  
 
𝜎2(𝑔2 − 𝑔1

2) 𝜉2⁄       if 𝜉 ≠ 0, 𝜉 = 1,

𝜎2
𝜋2

6
               if 𝜉 = 0,

∞                        if 𝜉 ≥
1

2
.

 

 

where 𝑔𝑘 = Γ(1 − 𝑘𝜉) 



Skewness 

{
 
 
 
 

 
 
 
 
𝑔3 − 3𝑔1𝑔2 + 2𝑔1

(𝑔2 − 𝑔1
2)
3
2

            if  𝜉 > 0,

−
𝑔3 − 3𝑔1𝑔2 + 2𝑔1

3

(𝑔2 − 𝑔1
2)
3
2

      if 𝜉 < 0,

12√6𝜁(3)

𝜋3
                           if 𝜉 = 0.

 

 

where 𝜁(𝑥) is Riemann zeta function 

Kurtosis 

{
 
 
 

 
 
 
𝑔4 − 4𝑔1𝑔3 + 6𝑔2𝑔1

2 − 3𝑔1
4

(𝑔2 − 𝑔1
2)2

      if 𝜉 ≠ 0, 𝜉 =
1

4
,

12

56
                                         if 𝜉 = 0,

∞                                            if 𝜉 ≥
1

4
.

 

 

Example: 

Generate a random number using a Fisher–Tippett distribution with mean = 0.0 and standard 

deviation = 1.0. 

Solution: 

dist = import_java_class("library.stochastic.ProbabilityDistribution"); 

The statement above imports the Probability Distribution class and assigns it to the pointer dist. 

r = dist.fisherTippett(0.0, 1.0); 

 

The above statement computes a random number based on a Fisher–Tippett distribution with 

mean = 0.0 and standard deviation = 1.0. 

Alternatively, the same result can be obtained using the following statements. 

dist.setFisherTippett(0.0, 1.0); 

r = dist.random(); 

 

5.6.2.14    Weibull Distribution 

the Weibull distribution is a continuous probability distribution. It is named after Swedish 

mathematician Waloddi Weibull, who described it in detail in 1951, although it was first 



identified by Fréchet (1927) and first applied by Rosin & Rammler (1933) to describe a particle 

size distribution. 

Properties of the Weibull distribution is given in the table below: 

Property Value 
Notation  

Parameters  𝜆 ∈ (−∞,+∞)       -- scale 

𝑘 ∈ (−∞,+∞)       -- shape 

 

Support 𝑥 ∈ [0, +∞) 
Probability density function (PDF) 

{

𝑘

𝜆
(
𝑥

𝜆
)
𝑘−1

𝑒−(𝑥 𝜆)⁄ 𝑘
   for 𝑥 ≥ 0

0                                  for 𝑥 < 0

 

Cumulative Distribution function 

(CDF) {
1 − 𝑒−(𝑥 𝜆)⁄ 𝑘

   for 𝑥 ≥ 0

0                       for 𝑥 < 0

 

Mean 𝜆Γ(1 + 1 𝑘)⁄  

Median 𝜆(ln(2))1 𝑘⁄  

Mode 

{
 
 

 
 
𝜆 (
𝑘 − 1

𝑘
)

1
𝑘

   for 𝑘 > 1

0                      for 𝑘 = 1

 

Variance 
𝜆2 [Γ (1 +

2

𝑘
) − (Γ (1 +

1

𝑘
))

2

] 

Skewness Γ(1 + 3 𝑘⁄ )𝜆3 − 3𝜇𝜎2 − 𝜇3

𝜎3
 

Kurtosis  

 

Example: 

Generate a random number using a Weibull distribution with shape = 1.0 and scale = 2.0. 

Solution: 

dist = import_java_class("library.stochastic.ProbabilityDistribution"); 

The statement above imports the Probability Distribution class and assigns it to the pointer dist. 

r = dist.weibull(1.0, 2.0); 

 

The above statement computes a random number based on a Weibull distribution with shape = 

1.0 and scale = 2.0. 

Alternatively, the same result can be obtained using the following statements. 



dist. setWeibull(1.0, 2.0); 
r = dist.random(); 

 

5.6.2.15    Cauchy Distribution 

The Cauchy distribution, named after Augustin Cauchy, is a continuous probability 

distribution. It is also known, especially among physicists, as the Lorentz distribution (after 

Hendrik Lorentz), Cauchy–Lorentz distribution, Lorentz(ian) function, or Breit–Wigner 

distribution. The simplest Cauchy distribution is called the standard Cauchy distribution. It is 

the distribution of a random variable that is the ratio of two independent standard normal 

variables and has the probability density function. 

Properties of the Cauchy distribution is given in the table below: 

Property Value 
Parameters  𝑥0 location (real) 

𝑌 > 0 scale (real) 

Support (−∞,+∞) 
Probability density 

function (PDF) 

1

𝜋𝛾 [1 + (
𝑥 − 𝑥0
𝛾

)
2

]
 

Cumulative Distribution 

function (CDF) 

1

𝜋
arctan (

𝑥 − 𝑥0
𝛾

) +
1

2
 

Mean Undefined 

Median 𝑥0 

Mode 𝑥0 

Variance Undefined 

Skewness Undefined 

Kurtosis Undefined 

 

Example: 

Generate a random number using a Cauchy distribution with location = 0.0 and scale = 1.0. 

Solution: 

dist = import_java_class("library.stochastic.ProbabilityDistribution"); 

The statement above imports the Probability Distribution class and assigns it to the pointer dist. 

r = dist.cauchy(0.0, 1.0); 

 

The above statement computes a random number based on a Cauchy distribution with middle = 

0.0 and width = 1.0. 



Alternatively, the same result can be obtained using the following statements. 

dist. setCauchy(0.0, 1.0); 
r = dist.random(); 

 

5.6.2.16   Histogrammed Distribution 

 

5.7 Frequency Domain 

The Frequency Domain library contains methods that transform time domain data into frequency 

domain data and vice versa.  The Frequency Domain library contains one class, FFT.  The 

Frequency Domain library is documented in Appendix G. 

5.7.1 FFT 

The Fourier transform decomposes a signal (a time domain function) into the frequencies that 

make up the signal.  The Fourier transform of a function of time itself is a complex-valued 

function of frequency, whose absolute value represents the amount of that frequency present in 

the original function, and whose complex argument is the phase offset of the basic sinusoid in 

that frequency. The Fourier transform is called the frequency domain representation of the 

original signal. The equation for Fourier transform is 

𝐺(𝑓) =  ∫ 𝑔(𝑡)𝑒−𝑖2𝜋𝑓𝑡 𝑑𝑡
∞

−∞

 

 

The equation for inverse Fourier transform is 

𝑔(𝑡) =  ∫ 𝐺(𝑓)𝑒𝑖2𝜋𝑓𝑡 𝑑𝑓
∞

−∞

 

 

A fast Fourier transform (FFT) algorithm computes the discrete Fourier transform (DFT) of a 

sequence, or its inverse. Fourier analysis converts a signal from its original domain (often time or 

space) to a representation in the frequency domain and vice versa. An FFT reduces the number 

of operations of computing the DFT from 𝑂(𝑛2) to 𝑂(𝑛 log 𝑛), where 𝑛 is the data size.  An FFT 

is much faster than DFT at evaluating the DFT definition directly, but produces exactly the same 

result.  

Let 𝑥0, ⋯ , 𝑥𝑁−1be complex numbers. The DFT is defined by the formula 



𝑋𝑘 = ∑ 𝑥𝑛𝑒
−𝑖2𝜋𝑘𝑛

𝑁
                 𝑘 = 0,… ,𝑁 − 1

𝑁−1

𝑛=0

 

All the functions contained in the FFT class are listed in Appendix G. 

Example: 

Given the signal 𝑥 = cos (
2𝜋𝑛

10
) where 𝑛 = 0, 1, … , 28, 29. 

Perform FFT for 30, 64, 128, and 256 samples. 

Solution: 

fd = import_java_class("library.frequency_domain.FFT"); 

The statement above imports the FFT class and assigns it to the pointer fd. 

X30 = fd.fft(x).magnitude; 

The statement above performs FFT for 30 (number of data points in 𝑥) samples and assigns the 

output to the variable . 

X64 = fd.fft(x, 64).magnitude; 

 

The statement above performs FFT for 30 samples and assigns the output to the variable X64. 

X128 = fd.fft(x, 128).magnitude; 

The statement above performs FFT for 30 samples and assigns the output to the variable X128. 

X256 = fd.fft(x, 256).magnitude; 

The statement above performs FFT for 30 samples and assigns the output to the variable X256. 

 

 

  



Appendix A -- Library: General Math  
 

A.1 Constants: 

Identifier Description Type 

E The real value that is closer than any other to e, the base of the natural logarithms. real 

PI The real value that is closer than any other to pi, the ratio of the circumference of a circle 

to its diameter. 
real 

 

A.2 Functions 

Call Signature Description Return Type 

abs(real a)  Returns the absolute value of a real value. real 

abs(integer a)  Returns the absolute value of a integer value. integer 

abs(realVector a) Returns a vector whose elements are the absolute values of 

the elements of the input vector a. 
realVector 

abs(realMatrix a)  Returns a matrix whose elements are the absolute values 

of the elements of the input matrix a. 
realMatrix 

acos(real a)  Returns the arc cosine of a value; the returned angle is in 

the range 0.0 through pi. 
real 

acos(integer a)  Returns the arc cosine of a value; the returned angle is in 

the range 0.0 through pi. 
real 

acos(realVector a)  Returns a vector whose elements are the arc cosines of the 

elements of the input vector a; the returned angles are in 

the range 0.0 through pi. 

realVector 

acos(realMatrix a)  Returns a matrix whose elements are the arc cosines of the 

elements of the input matrix a; the returned angles are in 

the range 0.0 through pi. 

realMatrix 

asin(real a)  Returns the arc sine of a value; the returned angle is in the 

range -pi/2 through pi/2. 
real 

asin(integer a)  Returns the arc sine of a value; the returned angle is in the 

range -pi/2 through pi/2. 
real 

asin(realVector a)  Returns a vector whose elements are the arc sines of the 

elements of the input vector a; the returned angle is in the 

range -pi/2 through pi/2. 

realVector 

asin(realMatrix a)  Returns a matrix whose elements are the arc sines of the 

elements of the input matrix a; the returned angle is in the 

range -pi/2 through pi/2. 

realMatrix 

atan(real a) Returns the arc tangent of a value; the returned angle is in 

the range -pi/2 through pi/2. 
real 

atan(integer a) Returns the arc tangent of a value; the returned angle is in 

the range -pi/2 through pi/2. 
real 

atan(realVector a) Returns a vector whose elements are the arc tangents of realVector 

http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#acos%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#acos%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#acos%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#acos%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#asin%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#asin%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#asin%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#asin%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#atan%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#atan%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#atan%28double%29


the elements of the input vector a; the returned angle is in 

the range -pi/2 through pi/2. 

atan(realMatrix a) Returns a matrix whose elements are the arc tangents of 

the elements of the input matrix a; the returned angle is in 

the range -pi/2 through pi/2. 

realMatrix 

atan2(integer y, 

integer x) 
Returns the angle theta from the conversion of rectangular 

coordinates (x, y) to polar coordinates (r, theta). 
real 

atan2(integer y, real x) Returns the angle theta from the conversion of rectangular 

coordinates (x, y) to polar coordinates (r, theta). 
real 

atan2(real y, integer x) Returns the angle theta from the conversion of rectangular 

coordinates (x, y) to polar coordinates (r, theta). 
real 

atan2(real y, real x) Returns the angle theta from the conversion of rectangular 

coordinates (x, y) to polar coordinates (r, theta). 
real 

cbrt(integer a) Returns the cube root of a integer value. real 

cbrt(real a) Returns the cube root of a real value. real 

ceil(real a) Returns the smallest (closest to negative infinity) real 

value that is greater than or equal to the argument and is 

equal to a mathematical integer. 

real 

copySign(real magnitude, 

real sign) 
Returns the first floating-point argument with the sign of 

the second floating-point argument. 
real 

cos(real a)  Returns the trigonometric cosine of an angle. real 

cos(integer a)  Returns the trigonometric cosine of an angle. real 

cos(realVector a)  Returns a vector whose elements are the trigonometric 

cosines of the elements of the input vector a. 
realVector 

cos(realMatrix a)  Returns a matrix whose elements are the trigonometric 

cosines of the elements of the input matrix a. 
realMatrix 

cosh(integer x)  Returns the hyperbolic cosine of a integer value. real 

cosh(real x)  Returns the hyperbolic cosine of a real value. real 

cosh(realVector x)  Returns a vector whose elements are the hyperbolic 

cosines of the elements of the input vector x. 
realVector 

cosh(realMatrix x)  Returns a matrix whose elements are the hyperbolic 

cosines of the elements of the input matrix x. 
realMatrix 

exp(integer a)  Returns Euler's number e raised to the power of a real 

value. 
real 

exp(real a)  Returns Euler's number e raised to the power of a real 

value. 
real 

expm1(real x)  Returns ex -1. real 

floor(real a)  Returns the largest (closest to positive infinity) real 

value that is less than or equal to the argument and is equal 

to a mathematical integer. 

real 

getExponent(real d)  Returns the unbiased exponent used in the representation 

of a real. 
int 

hypot(real x, real y)  

 
Returns sqrt(x2 +y2) without intermediate overflow or 

underflow. 
real 

IEEEremainder(integer f1, Computes the remainder operation on two arguments as real 
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integer f2)  

 
prescribed by the IEEE 754 standard. 

IEEEremainder(integer f1, 

real f2)  

 

Computes the remainder operation on two arguments as 

prescribed by the IEEE 754 standard. 
real 

IEEEremainder(real f1, 

integer f2)  

 

Computes the remainder operation on two arguments as 

prescribed by the IEEE 754 standard. 
real 

IEEEremainder(real f1, 

real f2)  

 

Computes the remainder operation on two arguments as 

prescribed by the IEEE 754 standard. 
real 

log(integer a)  

 
Returns the natural logarithm (base e) of a integer 

value. 
real 

log(real a)  

 
Returns the natural logarithm (base e) of a real value. real 

log(realVector a) Returns the natural logarithm (base e) of a realVector 

value. 
realVector 

log(realMatrix a) Returns the natural logarithm (base e) of a realMatrix 

value. 
realMatrix 

logb(integer a, integer b) Returns the base b logarithm of a integer value. real 

logb(integer a, real b) Returns the base b logarithm of a integer value. real 

logb(real a, integer b) Returns the base b logarithm of a real value. real 

logb(real a, real b) Returns the base b logarithm of a real value. real 

logb(realVector a, integer 

b) 
Returns the base b logarithm of a realVector value. realVector 

logb(realVector a, real b) Returns the base b logarithm of a realVector value. realVector 

logb(realMatrix a, integer 

b) 
Returns the base b logarithm of a realMatrix value. realMatrix 

logb(realMatrix a, real b) Returns the base b logarithm of a realMatrix value. realMatrix 

Log2(integer a)  Returns the base 2 logarithm of a integer value. real 

log2(real a)  Returns the base 2 logarithm of a real value. real 

log2(realVector a)  Returns the base 2 logarithm of a realVector value. realVector 

log2(realMatrix a)  Returns the base 2 logarithm of a realMatrix value. realMatrix 

log10(integer a)  Returns the base 10 logarithm of a integer value. real 

log10(real a)  Returns the base 10 logarithm of a real value. real 

log10(realVector a)  Returns the base 10 logarithm of a realVector value. realVector 

log10(realMatrix a)  Returns the base 10 logarithm of a realMatrix value. realMatrix 

log1p(real x)  

 
Returns the natural logarithm of the sum of the argument 

and 1. 
real 

max(integer a, integer b)  Returns the greater of two integer values. integer 

max(integer a, real b)  Returns the greater of two values. real 

max(real a, integer b)  Returns the greater of two values. real 

max(real a, real b)  Returns the greater of two real values. real 
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min(integer a, integer b)  Returns the smaller of two integer values. integer 

min(integer a, real b) Returns the smaller of two values. real 

min(real a, integer b) Returns the smaller of two values. real 

min(real a, real b) Returns the smaller of two real values. real 

nextAfter(real start, 

real direction)  
Returns the floating-point number adjacent to the first 

argument in the direction of the second argument. 
real 

nextUp(real d)  Returns the floating-point value adjacent to d in the 

direction of positive infinity. 
real 

rint(real a)  Returns the real value that is closest in value to the 

argument and is equal to a mathematical integer. 
real 

round(real a) Returns the closest integer to the argument, with ties 

rounding up. 
integer 

scalb(real d, 

int scaleFactor) 
Return d × 2scaleFactor rounded as if performed by a 

single correctly rounded floating-point multiply to a 

member of the double value set. 

real 

signum(real d) Returns the signum function of the argument; zero if the 

argument is zero, 1.0 if the argument is greater than zero, -

1.0 if the argument is less than zero. 

real 

sin(real a) Returns the trigonometric sine of an angle. real 

sin(integer a) Returns the trigonometric sine of an angle. real 

sin(realVector a) Returns a vector whose elements are the trigonometric 

sines of the elements of the input vector a. 
realVector 

sin(realMatrix a) Returns a matrix whose elements are the trigonometric 

sines of the elements of the input matrix a. 
realMatrix 

sinh(integer x)  Returns the hyperbolic sine of a integer value. real 

sinh(real x)  Returns the hyperbolic sine of a real value. real 

sinh(realVector x)  Returns a vector whose elements are the hyperbolic sines 

of the elements of the input vector a. 
realVector 

sinh(realMatrix x)  Returns a matrix whose elements are the hyperbolic sines 

of the elements of the input matrix a. 
realMatrix 

sqrt(integer a)  Returns the correctly rounded positive square root of a 

integer value. 
real 

sqrt(real a)  Returns the correctly rounded positive square root of a 

real value. 
real 

tan(real a)  Returns the trigonometric tangent of an angle. real 

tan(integer a)  Returns the trigonometric tangent of an angle. real 

tan(realVector a)  Returns a vector whose elements are the trigonometric 

tangents of the elements of the input vector a. 
realVector 

tan(realMatrix a)  Returns a matrix whose elements are the trigonometric 

tangents of the elements of the input matrix a. 
realMatrix 

tanh(integer x)  Returns the hyperbolic tangent of a integer value. real 

tanh(real x)  Returns the hyperbolic tangent of a real value. real 

tanh(realVector x)  Returns a vector whose elements are the hyperbolic 

tangents of the elements of the input vector a. 
realVector 
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tanh(real x)  Returns a matrix whose elements are the hyperbolic 

tangents of the elements of the input matrix a. 
realMatrix 

toDegrees(integer angrad) Converts an angle measured in radians to an 

approximately equivalent angle measured in degrees. 
real 

toDegrees(real angrad) Converts an angle measured in radians to an 

approximately equivalent angle measured in degrees. 
real 

toRadians(integer angdeg)  Converts an angle measured in degrees to an 

approximately equivalent angle measured in radians. 
real 

toRadians(real angdeg)  Converts an angle measured in degrees to an 

approximately equivalent angle measured in radians. 
real 

ulp(real d)  Returns the size of an ulp of the argument. real 

 

A.2.1 toRadians 

Signatures: 

toRadians(integer   angdeg) 

toRadians(real angdeg) 

 

Description: 

Converts an angle measured in degrees to an approximately equivalent angle measured in 

radians. The conversion from degrees to radians is generally inexact. Argument of type long 

converted to a double value. 

Parameters: 

• angdeg - an angle, in degrees 

Returns: 

• The measurement of the angle angdeg in radians. The return type is double. 

 

 

 

A.2.2 toDegrees 

Signature: 

toDegrees(integer   angrad) 

toDegrees(real angrad) 
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Description: 

Converts an angle measured in radians to an approximately equivalent angle measured in 

degrees. The conversion from radians to degrees is generally inexact; users should not expect 

cos(toRadians(90.0)) to exactly equal 0.0. Argument of type long converted to a double 

value. 

Parameters: 

• angrad - an angle, in radians 

Returns: 

The measurement of the angle a 

 

A.2.3 sin 

Signatures: 

sin(integer   a) 

sin(real a) 

sin(realVector a) 

sin(realMatrix a) 

 

 

Description: 

Returns the trigonometric sine of an angle.  

Special cases:  

• If the argument is NaN or an infinity, then the result is NaN.  

• If the argument is zero, then the result is a zero with the same sign as the argument. 

The computed result must be within 1 ulp of the exact result. Results must be semi-

monotonic. Argument of type long converted to a double value. 

 

Parameters: 

• a - an angle, in radians for type long and double. 

• a – a vector whose elements are angles, in radians for type vector. 

• a – a matrix whose elements are angles, in radians for type matrix. 

 



Returns: 

• The sine of the argument, for input type long or double. 

• A vector whose elements are the sines of the elements of the vector argument, for the 

input type vector. 

• A matrix whose elements are the sines of the elements of the matrix argument, for the 

input type matrix. 

 

A.2.4 cos 

Signatures: 

cos(integer   a) 

cos(real a) 

cos(realVector a) 

cos(realMatrix a) 

 

Description: 

Returns the trigonometric cosine of an angle.  

Special cases:  

• If the argument is NaN or an infinity, then the result is NaN. 

The computed result must be within 1 ulp of the exact result. Results must be semi-

monotonic. Argument of type long converted to a double value. 

 

Parameters: 

• a - an angle, in radians for type long and double. 

• a – a vector whose elements are angles, in radians for type vector. 

• a – a matrix whose elements are angles, in radians for type matrix. 

 

Returns: 

• The cosine of the argument, for input type long or double. 

• A vector whose elements are the cosines of the elements of the vector argument, for 

the input type vector. 

• A matrix whose elements are the cosines of the elements of the matrix argument, for 

the input type matrix. 



 

A.2.5 tan 

Signatures: 

tan(integer   a) 

tan(real a) 

tan(realVector a) 

tan(realMatrix a) 

 

Description: 

Returns the trigonometric tangent of an angle.  

Special cases:  

• If the argument is NaN or an infinity, then the result is NaN.  

• If the argument is zero, then the result is a zero with the same sign as the argument. 

The computed result must be within 1 ulp of the exact result. Results must be semi-

monotonic. Argument of type long converted to a double value. 

Parameters: 

• a - an angle, in radians for type long and double. 

• a – a vector whose elements are angles, in radians for type vector. 

• a – a matrix whose elements are angles, in radians for type matrix. 

Returns: 

• The tangent of the argument, for input type long or double. 

• A vector whose elements are the tangent of the elements of the vector argument, for 

the input type vector. 

• A matrix whose elements are the tangent of the elements of the matrix argument, for 

the input type matrix. 

 

A.2.6 asin 

Signatures: 

asin(integer   a) 

asin(real a) 

asin(realVector a) 

asin(realMatrix a) 



 

Description: 

Returns the arc sine of a value; the returned angle is in the range -pi/2 through pi/2.  

Special cases:  

• If the argument is NaN or its absolute value is greater than 1, then the result is NaN.  

• If the argument is zero, then the result is a zero with the same sign as the argument. 

The computed result must be within 1 ulp of the exact result. Results must be semi-

monotonic. Argument of type long converted to a double value. 

 

Parameters: 

• a - the value whose arc sine is to be returned, for type long and double. 

• a – a vector whose elements are the values whose arc sine is to be returned, for type 

vector. 

• a – a matrix whose elements are the values whose arc sine is to be returned, for type 

matrix. 

 

Returns: 

• The arc sine of the argument, for input type long or double. 

• A vector whose elements are the arc sine of the elements of the vector argument, for 

the input type vector. 

• A matrix whose elements are the arc sine of the elements of the matrix argument, for 

the input type matrix. 

 

A.2.7 acos 

Signatures: 

acos(integer   a) 

acos(real a) 

acos(realVector a) 

acos(realMatrix a) 

 

Description: 

Returns the arc cosine of a value; the returned angle is in the range 0.0 through pi.  



Special case:  

• If the argument is NaN or its absolute value is greater than 1, then the result is NaN. 

The computed result must be within 1 ulp of the exact result. Results must be semi-

monotonic. Argument of type long converted to a double value. 

 

Parameters: 

• a - the value whose arc cosine is to be returned, for type long and double. 

• a – a vector whose elements are the values whose arc cosine is to be returned, for type 

vector. 

• a – a matrix whose elements are the values whose arc cosine is to be returned, for 

type matrix. 

Returns: 

• The arc cosine of the argument, for input type long or double. 

• A vector whose elements are the arc cosine of the elements of the vector argument, 

for the input type vector. 

• A matrix whose elements are the arc cosine of the elements of the matrix argument, 

for the input type matrix. 

 

A.2.8 atan 

Signatures: 

atan(integer   a) 

atan(real a) 

atan(realVector a) 

atan(realMatrix a) 

 

Description: 

Returns the arc tangent of a value; the returned angle is in the range -pi/2 through pi/2.  

Special cases:  

• If the argument is NaN, then the result is NaN.  

• If the argument is zero, then the result is a zero with the same sign as the argument. 



The computed result must be within 1 ulp of the exact result. Results must be semi-

monotonic. Argument of type long converted to a double value. 

Parameters: 

• a - the value whose arc tangent is to be returned, for type long and double. 

• a – a vector whose elements are the values whose arc tangent is to be returned, for 

type vector. 

• a – a matrix whose elements are the values whose arc tangent is to be returned, for 

type matrix. 

 

Returns: 

• The arc tangent of the argument, for input type long or double. 

• A vector whose elements are the arc tangent of the elements of the vector argument, for 

the input type vector. 

• A matrix whose elements are the arc tangent of the elements of the matrix argument, for 

the input type matrix. 

 

A.2.9 atan2 

Signatures: 

atan2(integer   y, integer   x) 

atan2(integer   y, real x) 

atan2(real y, integer   x) 

atan2(real y, real x) 

 

Description: 

Returns the angle theta from the conversion of rectangular coordinates (x, y) to polar 

coordinates (r, theta). This method computes the phase theta by computing an arc tangent of 

y/x in the range of -pi to pi.  

Special cases:  

• If either argument is NaN, then the result is NaN.  

• If the first argument is positive zero and the second argument is positive, or the first 

argument is positive and finite and the second argument is positive infinity, then the 

result is positive zero.  

• If the first argument is negative zero and the second argument is positive, or the first 

argument is negative and finite and the second argument is positive infinity, then the 

result is negative zero.  



• If the first argument is positive zero and the second argument is negative, or the first 

argument is positive and finite and the second argument is negative infinity, then the 

result is the real value closest to pi.  

• If the first argument is negative zero and the second argument is negative, or the first 

argument is negative and finite and the second argument is negative infinity, then the 

result is the real value closest to -pi.  

• If the first argument is positive and the second argument is positive zero or negative zero, 

or the first argument is positive infinity and the second argument is finite, then the result 

is the real value closest to pi/2.  

• If the first argument is negative and the second argument is positive zero or negative 

zero, or the first argument is negative infinity and the second argument is finite, then the 

result is the real value closest to -pi/2.  

• If both arguments are positive infinity, then the result is the real value closest to pi/4.  

• If the first argument is positive infinity and the second argument is negative infinity, then 

the result is the real value closest to 3*pi/4.  

• If the first argument is negative infinity and the second argument is positive infinity, then 

the result is the real value closest to -pi/4.  

• If both arguments are negative infinity, then the result is the real value closest to -

3*pi/4. 

The computed result must be within 2 ulps of the exact result. Results must be semi-monotonic. 

Arguments of type long converted to double values. 

Parameters: 

• y - the ordinate coordinate 

• x - the abscissa coordinate 

Returns: 

• the theta component of the point (r, theta) in polar coordinates that corresponds to the 

point (x, y) in Cartesian coordinates. The return type is double. 

 

A.2.10 sinh 

Signatures: 

sinh(integer   x) 

sinh(real x) 

sinh(realVector x) 

sinh(realMatrix x) 

 

Description: 



Returns the hyperbolic sine of a real value. The hyperbolic sine of x is defined to be (ex - e-

x)/2 where e is Euler's number.  

Special cases:  

• If the argument is NaN, then the result is NaN.  

• If the argument is infinite, then the result is an infinity with the same sign as the 

argument.  

• If the argument is zero, then the result is a zero with the same sign as the argument.  

The computed result must be within 2.5 ulps of the exact result. 

Parameters: 

• x - The number whose hyperbolic sine is to be returned for type long and double. 

• x – a vector whose elements are the numbers whose hyperbolic sine is to be returned 

for type vector. 

• x – a matrix whose elements are the numbers whose hyperbolic sine is to be returned 

for type matrix. 

Returns: 

• The hyperbolic sine of x, for input type long or double. 

• A vector whose elements are the hyperbolic sine of x of the elements of the vector 

argument, for the input type vector. 

• A matrix whose elements are the hyperbolic sine of x of the elements of the matrix 

argument, for the input type matrix. 

 

A.2.11 cosh 

Signatures: 

cosh(integer   x) 

cosh(real x) 

cosh(realVector x) 

cosh(realMatrix x) 

 

 

Description: 

Returns the hyperbolic cosine of a real value. The hyperbolic cosine of x is defined to be 

(ex + e-x)/2 where e is Euler's number.  



Special cases:  

• If the argument is NaN, then the result is NaN.  

• If the argument is infinite, then the result is positive infinity.  

• If the argument is zero, then the result is 1.0.  

The computed result must be within 2.5 ulps of the exact result. 

Parameters: 

• x - The number whose hyperbolic cosine is to be returned for type long and double. 

• x – a vector whose elements are the numbers whose hyperbolic cosine is to be 

returned for type vector. 

• x – a matrix whose elements are the numbers whose hyperbolic cosine is to be 

returned for type matrix. 

Returns: 

• The hyperbolic cosine of x , for input type long or double. 

• A vector whose elements are the hyperbolic cosine of x of the elements of the vector 

argument, for the input type vector. 

• A matrix whose elements are the hyperbolic cosine of x of the elements of the matrix 

argument, for the input type matrix. 

 

A.2.12 tanh 

Signatures: 

tanh(integer   x) 

tanh(real x) 

tanh(realVector x) 

tanh(realMatrix x) 

 

Description: 

Returns the hyperbolic tangent of a real value. The hyperbolic tangent of x is defined to be 

(ex - e-x)/(ex + e-x), in other words, sinh(x)/cosh(x). Note that the absolute value of the exact 

tanh is always less than 1.  

Special cases:  

• If the argument is NaN, then the result is NaN.  

• If the argument is zero, then the result is a zero with the same sign as the argument.  



• If the argument is positive infinity, then the result is +1.0.  

• If the argument is negative infinity, then the result is -1.0.  

The computed result must be within 2.5 ulps of the exact result. The result of tanh for any 

finite input must have an absolute value less than or equal to 1. Note that once the exact 

result of tanh is within 1/2 of an ulp of the limit value of ±1, correctly signed ±1.0 should be 

returned. 

Parameters: 

• x - The number whose hyperbolic tangent is to be returned for type long and double. 

• x – a vector whose elements are the numbers whose hyperbolic tangent is to be 

returned for type vector. 

• x – a matrix whose elements are the numbers whose hyperbolic tangent is to be 

returned for type matrix. 

Returns: 

• The hyperbolic tangent of x , for input type long or double. 

• A vector whose elements are the hyperbolic tangent of x of the elements of the vector 

argument, for the input type vector. 

• A matrix whose elements are the hyperbolic tangent of x of the elements of the matrix 

argument, for the input type matrix. 

 

• ngrad in degrees. The return type is double. 

 

A.2.13 exp 

Signatures: 

exp(integer   a) 

exp(real a) 

 

Description: 

Returns Euler's number e raised to the power of a real value.  

Special cases:  

• If the argument is NaN, the result is NaN.  

• If the argument is positive infinity, then the result is positive infinity.  



• If the argument is negative infinity, then the result is positive zero. 

The computed result must be within 1 ulp of the exact result. Results must be semi-

monotonic. Argument of type long converted to a double value. 

Parameters: 

• a - the exponent to raise e to. 

Returns: 

• The value ea, where e is the base of the natural logarithms. The return type is double. 

 

A.2.14 log 

Signatures: 

log(integer   a) 

log(real a) 

log(realVector a) 

log(realMatrix a) 

 

 

Description: 

Returns the natural logarithm (base e) of a long, double, vector, or matrix value.  

Special cases:  

• If the argument is NaN or less than zero, then the result is NaN.  

• If the argument is positive infinity, then the result is positive infinity.  

• If the argument is positive zero or negative zero, then the result is negative infinity. 

The computed result must be within 1 ulp of the exact result. Results must be semi-

monotonic. Argument of type long converted to a double value. 

Parameters: 

• a - a value 

Returns: 

• the value ln a, the natural logarithm of a. The return type is double, vector, or matrix. 

 



A.2.15 logb 

Signatures: 

logb(integer   a, integer   b) 

logb(integer   a, real b) 

logb(real a, integer   b) 

logb(real a, real b) 

logb(realVector a, integer   b) 

logb(realVector a, real b) 

logb(realMatrix a, integer   b) 

logb(realMatrix a, real b) 

 

Description: 

Returns the base b logarithm of a long, double, vector, or matrix value.  

Special cases:  

• If the argument is NaN or less than zero, then the result is NaN.  

• If the argument is positive infinity, then the result is positive infinity.  

• If the argument is positive zero or negative zero, then the result is negative infinity.  

• If the argument is equal to 10n for integer n, then the result is n.  

The computed result must be within 1 ulp of the exact result. Results must be semi-

monotonic. Argument of type long converted to a double value. 

 

Parameters: 

• a - a value 

Returns: 

• the base b logarithm of a. The return type is double, vector, or matrix. 

 

A.2.16 log2 

Signatures: 

log2(integer   a) 

log2(real a) 

log2(realVector a) 

log2(realMatrix a) 

 

Description: 



Returns the base 10 logarithm of a long, double, vector, or matrix value.  

Special cases:  

• If the argument is NaN or less than zero, then the result is NaN.  

• If the argument is positive infinity, then the result is positive infinity.  

• If the argument is positive zero or negative zero, then the result is negative infinity.  

• If the argument is equal to 10n for integer n, then the result is n.  

The computed result must be within 1 ulp of the exact result. Results must be semi-

monotonic. Argument of type long converted to a double value. 

Parameters: 

• a - a value 

Returns: 

• the base 2 logarithm of a. The return type is double, vector, or matrix. 

 

A.2.17 log10 

Signatures: 

log10(integer   a) 

log10(real a) 

log10(realVector a) 

log10(realMatrix a) 

 

Description: 

Returns the base 10 logarithm of a real value.  

Special cases:  

• If the argument is NaN or less than zero, then the result is NaN.  

• If the argument is positive infinity, then the result is positive infinity.  

• If the argument is positive zero or negative zero, then the result is negative infinity.  

• If the argument is equal to 10n for integer n, then the result is n.  

The computed result must be within 1 ulp of the exact result. Results must be semi-

monotonic. Argument of type long converted to a double value. 

Parameters: 



• a - a value 

Returns: 

• the base 10 logarithm of a. The return type is double, vector, or matrix. 

 

A.2.18 sqrt 

Signature: 

sqrt(integer   a) 

sqrt(real a) 

 

 

Description: 

Returns the correctly rounded positive square root of a real value.  

Special cases:  

• If the argument is NaN or less than zero, then the result is NaN.  

• If the argument is positive infinity, then the result is positive infinity.  

• If the argument is positive zero or negative zero, then the result is the same as the 

argument. 

Otherwise, the result is the real value closest to the true mathematical square root of the 

argument value. Argument of type long converted to a double value. 

Parameters: 

• a - a value. 

Returns: 

• the positive square root of a. If the argument is NaN or less than zero, the result is 

NaN. The return type is double. 

 

A.2.19 cbrt 

Signature: 

cbrt(integer   a) 

cbrt(real a) 



 

Description: 

Returns the cube root of a real value. For positive finite x, cbrt(-x) == -cbrt(x); that is, 

the cube root of a negative value is the negative of the cube root of that value's magnitude.  

Special cases:  

• If the argument is NaN, then the result is NaN.  

• If the argument is infinite, then the result is an infinity with the same sign as the 

argument.  

• If the argument is zero, then the result is a zero with the same sign as the argument.  

The computed result must be within 1 ulp of the exact result. Argument of type long 

converted to a double value. 

Parameters: 

• a - a value. 

Returns: 

• the cube root of a. The return type is double. 

 

A.2.20 IEEEremainder 

Signature: 

IEEEremainder(integer   f1, integer   f2) 

IEEEremainder(integer   f1, real f2) 

IEEEremainder(real f1, integer   f2) 

IEEEremainder(real f1, real f2) 

 

Description: 

Computes the remainder operation on two arguments as prescribed by the IEEE 754 

standard. The remainder value is mathematically equal to f1 - f2 × n, where n is the 

mathematical integer closest to the exact mathematical value of the quotient f1/f2, and if 

two mathematical integers are equally close to f1/f2, then n is the integer that is even. If the 

remainder is zero, its sign is the same as the sign of the first argument.  

Special cases:  



• If either argument is NaN, or the first argument is infinite, or the second argument is 

positive zero or negative zero, then the result is NaN.  

• If the first argument is finite and the second argument is infinite, then the result is the 

same as the first argument. 

Arguments of type long converted to double values. 

Parameters: 

• f1 - the dividend. 

• f2 - the divisor. 

Returns: 

• the remainder when f1 is divided by f2. The return type is double. 

 

A.2.21 ceil 

Signature: 

ceil(real a) 

 

Description: 

Returns the smallest (closest to negative infinity) double value that is greater than or equal to 

the argument and is equal to a mathematical integer.  

Special cases:  

• If the argument value is already equal to a mathematical integer, then the result is the 

same as the argument.  

• If the argument is NaN or an infinity or positive zero or negative zero, then the result is 

the same as the argument.  

• If the argument value is less than zero but greater than -1.0, then the result is negative 

zero. 

Note that the value of ceil(x) is exactly the value of -floor(-x). 

Parameters: 

• a - a value. 

Returns: 



• the smallest (closest to negative infinity) floating-point value that is greater than or equal 

to the argument and is equal to a mathematical integer. 

 

A.2.22 floor 

Signature: 

floor(real a) 

 

Description: 

Returns the largest (closest to positive infinity) real value that is less than or equal to the 

argument and is equal to a mathematical integer.  

Special cases:  

• If the argument value is already equal to a mathematical integer, then the result is the 

same as the argument.  

• If the argument is NaN or an infinity or positive zero or negative zero, then the result is 

the same as the argument. 

Parameters: 

• a - a value. 

Returns: 

• the largest (closest to positive infinity) floating-point value that less than or equal to the 

argument and is equal to a mathematical integer. 

 

A.2.23 rint 

Signature: 

rint(real a) 

 

Description: 

Returns the real value that is closest in value to the argument and is equal to a mathematical 

integer. If two real values that are mathematical integers are equally close, the result is the 

integer value that is even.  



Special cases:  

• If the argument value is already equal to a mathematical integer, then the result is the 

same as the argument.  

• If the argument is NaN or an infinity or positive zero or negative zero, then the result is 

the same as the argument. 

Parameters: 

• a - a real value. 

Returns: 

• the closest floating-point value to a that is equal to a mathematical integer. 

 

A.2.24 round 

Signature: 

round(real a) 

 

Description: 

Returns the closest integer to the argument, with ties rounding up.  

Special cases:  

• If the argument is NaN, the result is 0.  

• If the argument is negative infinity or any value less than or equal to the value of the 

minimum long value, the result is equal to the value of the minimum long value.  

• If the argument is positive infinity or any value greater than or equal to the value of 

the maximum long value, the result is equal to the value of the maximum long value. 

Parameters: 

• a - a floating-point value to be rounded to a integer. 

Returns: 

• the value of the argument rounded to the nearest integer value. 

 

A.2.25 abs 

Signature: 



abs(integer   a) 

abs(real a) 

abs(realVector a) 

abs(realMatrix a) 

 

Description: 

Returns the absolute value of the argument. If the argument is not negative, the argument is 

returned. If the argument is negative, the negation of the argument is returned.  

Special cases:  

• If the argument is positive zero or negative zero, the result is positive zero.  

• If the argument is infinite, the result is positive infinity.  

• If the argument is NaN, the result is NaN. 

Parameters: 

• a - the argument whose absolute value is to be determined for type long and double. 

• a – a vector whose elements are the values whose absolute values is to be determined 

for type vector. 

• a – a matrix whose elements are the values whose absolute values is to be determined 

for type matrix. 

 

Returns: 

• The absolute value of the argument, for input type long or double. 

• A vector whose elements are the absolute value of the elements of the vector 

argument, for the input type vector. 

• A matrix whose elements are the absolute value of the elements of the matrix 

argument, for the input type matrix. 

 

 

 

A.2.26 max 

Signature: 

max(integer   a, integer b) 

max(integer   a, real b) 

max(real a, integer   b) 



max(real a, real b) 

 

 

Description: 

Returns the greater of two values. That is, the result is the argument closer to positive 

infinity. If the arguments have the same value, the result is that same value. If either value is 

NaN, then the result is NaN. Unlike the numerical comparison operators, this method 

considers negative zero to be strictly smaller than positive zero. If one argument is positive 

zero and the other negative zero, the result is positive zero. 

Parameters: 

• a - an argument. 

• b - another argument. 

Returns: 

• the larger of a and b. The return type is long if both arguments are of long type. 

Otherwise, the return type is double. 

 

A.2.27 min 

Signature: 

min(integer   a, integer   b) 

min(integer   a, real b) 

min(real a, integer   b) 

min(real a, real b) 

 

 

Description: 

Returns the smaller of two values. That is, the result is the value closer to negative infinity. If 

the arguments have the same value, the result is that same value. If either value is NaN, then 

the result is NaN. Unlike the numerical comparison operators, this method considers negative 

zero to be strictly smaller than positive zero. If one argument is positive zero and the other is 

negative zero, the result is negative zero. 

Parameters: 

• a - an argument. 

• b - another argument. 



Returns: 

• the smaller of a and b. The return type is long if both arguments are of long type. 

Otherwise, the return type is double. 

 

A.2.28 ulp 

Signature: 

ulp(real d) 

 

Description: 

Returns the size of an ulp of the argument. An ulp of a real value is the positive distance 

between this floating-point value and the real value next larger in magnitude. Note that for 

non-NaN x, ulp(-x) == ulp(x).  

Special Cases:  

• If the argument is NaN, then the result is NaN.  

• If the argument is positive or negative infinity, then the result is positive infinity.  

• If the argument is positive or negative zero, then the result is the minimum double 

value.  

• If the argument is ±(the maximum double value), then the result is equal to 2971.  

Parameters: 

• d - the floating-point value whose ulp is to be returned 

Returns: 

• the size of an ulp of the argument 

 

 

A.2.29 signum 

Signature: 

signum(real d) 

 

Description: 



Returns the signum function of the argument; zero if the argument is zero, 1.0 if the 

argument is greater than zero, -1.0 if the argument is less than zero.  

Special Cases:  

• If the argument is NaN, then the result is NaN.  

• If the argument is positive zero or negative zero, then the result is the same as the 

argument.  

Parameters: 

• d - the floating-point value whose signum is to be returned 

Returns: 

• the signum function of the argument 

 

 

A.2.30 hypot 

Signature: 

hypot(real x, real y) 

 

Description: 

Returns sqrt(x2 +y2) without intermediate overflow or underflow.  

Special cases:  

• If either argument is infinite, then the result is positive infinity.  

• If either argument is NaN and neither argument is infinite, then the result is NaN.  

The computed result must be within 1 ulp of the exact result. If one parameter is held 

constant, the results must be semi-monotonic in the other parameter. 

Parameters: 

• x - a value 

• y - a value 

Returns: 



• sqrt(x2 +y2) without intermediate overflow or underflow 

 

A.2.31 expm1 

Signature: 

expm1(real x) 

 

Description: 

Returns ex -1. Note that for values of x near 0, the exact sum of expm1(x) + 1 is much closer 

to the true result of ex than exp(x).  

Special cases:  

• If the argument is NaN, the result is NaN.  

• If the argument is positive infinity, then the result is positive infinity.  

• If the argument is negative infinity, then the result is -1.0.  

• If the argument is zero, then the result is a zero with the same sign as the argument.  

The computed result must be within 1 ulp of the exact result. Results must be semi-

monotonic. The result of expm1 for any finite input must be greater than or equal to -1.0. 

Note that once the exact result of ex - 1 is within 1/2 ulp of the limit value -1, -1.0 should be 

returned. 

Parameters: 

• x - the exponent to raise e to in the computation of ex -1. 

Returns: 

• the value ex - 1. 

 

A.2.32 log1p 

log1p(real x) 

 

Description: 

Returns the natural logarithm of the sum of the argument and 1. Note that for small values x, 

the result of log1p(x) is much closer to the true result of ln(1 + x) than the floating-point 

evaluation of log(1.0+x).  



Special cases:  

• If the argument is NaN or less than -1, then the result is NaN.  

• If the argument is positive infinity, then the result is positive infinity.  

• If the argument is negative one, then the result is negative infinity.  

• If the argument is zero, then the result is a zero with the same sign as the argument.  

The computed result must be within 1 ulp of the exact result. Results must be semi-

monotonic. 

Parameters: 

• x - a value 

Returns: 

• the value ln(x + 1), the natural log of x + 1 

 

A.2.33 copySign 

Signature: 

copySign(real magnitude, real sign) 

 

Description: 

Returns the first floating-point argument with the sign of the second floating-point argument. 

Note that unlike the StrictMath.copySign method, this method does not require NaN sign 

arguments to be treated as positive values; implementations are permitted to treat some NaN 

arguments as positive and other NaN arguments as negative to allow greater performance. 

Parameters: 

• magnitude - the parameter providing the magnitude of the result 

• sign - the parameter providing the sign of the result 

Returns: 

• a value with the magnitude of magnitude and the sign of sign. 

 

A.2.34 getExponent 

Signature: 



getExponent(real d) 

 

Description: 

Returns the unbiased exponent used in the representation of a real. Special cases:  

• If the argument is NaN or infinite, then the result is Real.MAX_EXPONENT + 1.  

• If the argument is zero or subnormal, then the result is Double.MIN_EXPONENT -1.  

Parameters: 

• d - a real value 

Returns: 

• the unbiased exponent of the argument 

 

A.2.35 nextAfter 

Signature: 

nextAfter(real start, real direction) 

 

Description: 

Returns the floating-point number adjacent to the first argument in the direction of the second 

argument. If both arguments compare as equal the second argument is returned.  

Special cases:  

• If either argument is a NaN, then NaN is returned.  

• If both arguments are signed zeros, direction is returned unchanged (as implied by the 

requirement of returning the second argument if the arguments compare as equal).  

• If start is ±(minimum double value) and direction has a value such that the result 

should have a smaller magnitude, then a zero with the same sign as start is returned.  

• If start is infinite and direction has a value such that the result should have a smaller 

magnitude, the maximum double value with the same sign as start is returned.  

• If start is equal to ± (the maximum long value) and direction has a value such that the 

result should have a larger magnitude, an infinity with same sign as start is returned.  

Parameters: 

• start - starting floating-point value 

• direction - value indicating which of start's neighbors or start should be returned 

http://docs.oracle.com/javase/7/docs/api/java/lang/Double.html#MAX_EXPONENT
http://docs.oracle.com/javase/7/docs/api/java/lang/Double.html#MIN_EXPONENT


Returns: 

• The floating-point number adjacent to start in the direction of direction. 

 

A.2.36 nextUp 

Signature: 

nextUp(real d) 

 

Description: 

Returns the floating-point value adjacent to d in the direction of positive infinity.  

Special Cases:  

• If the argument is NaN, the result is NaN.  

• If the argument is positive infinity, the result is positive infinity.  

• If the argument is zero, the result is the minimum double value  

Parameters: 

• d - starting floating-point value 

Returns: 

• The adjacent floating-point value closer to positive infinity. 

 

A.2.37 scalb 

Signature: 

scalb(real d, int scaleFactor) 

 

Description: 

Return d × 2scaleFactor rounded as if performed by a single correctly rounded floating-point 

multiply to a member of the double value set. See the Java Language Specification for a 

discussion of floating-point value sets.  

Special cases:  

• If the first argument is NaN, NaN is returned.  



• If the first argument is infinite, then an infinity of the same sign is returned.  

• If the first argument is zero, then a zero of the same sign is returned.  

Parameters: 

• d - number to be scaled by a power of two. 

• scaleFactor - power of 2 used to scale d 

Returns: 

• d × 2scaleFactor 

 



Appendix B -- Library: Math2 
B.1 Classes 

Class Name Class Path 

Math2 library.Math2 

 

B.2 Functions 

Call Signature Description Return Type 

diagonal(integer size, real 

value) 
Returns a diagonal real matrix of size size x 

size and the elements of the diagonal set to 

the values of the parameter value. 

realMatrix 

diagonal(real size, real 

value) 
Returns a diagonal real matrix of size size x 

size and the elements of the diagonal set to 

the values of the parameter value. 

realMatrix 

diagonal(real size, integer 

value) 
Returns a diagonal real matrix of size size x 

size and the elements of the diagonal set to 

the values of the parameter value. 

realMatrix 

diagonal(real size, real 

value) 
Returns a diagonal real matrix of size size x 

size and the elements of the diagonal set to 

the values of the parameter value. 

realMatrix 

divElemByElem(realVector 

left, realVector right)  
Returns a real vector whose elements are 

ratios of the corresponding elements of the 

parameters left and right. 

realVector 

divElemByElem(realMatrix 

left, realMatrix right)  
Returns a real matrix whose elements are 

ratios of the corresponding elements of the 

parameters left and right. 

realMatrix 

identity(integer size) Returns a diagonal real matrix of size size x 

size and the elements of the diagonal set to 

1.0. 

realMatrix 

identity(real size) Returns a diagonal real matrix of size size x 

size and the elements of the diagonal set to 

1.0. 

realMatrix 

multElemByElem(realVector 

left, realVector right)  
Returns a real vector whose elements are 

products of the corresponding elements of the 

parameters left and right. 

realVector 

multElemByElem(realMatrix 

left, realMatrix right)  
Returns a real matrix whose elements are 

products of the corresponding elements of the 

parameters left and right. 

realMatrix 

ones(integer length) Returns a real vector of length length and 

all the elements set to 1.0. 
realVector 

ones(real length) Returns a real vector of length length and 

all the elements set to 1.0. 
realVector 



ones(integer row, integer 

col) 
Returns a real matrix of size row x col and 

all the elements set to 1.0. 
realMatrix 

ones(real row, integer col) Returns a real matrix of size row x col and 

all the elements set to 1.0. 
realMatrix 

ones(integer row, real col) Returns a real matrix of size row x col and 

all the elements set to 1.0. 
realMatrix 

ones(real row, real col) Returns a real matrix of size row x col and 

all the elements set to 1.0. 
realMatrix 

transpose(realMatrix a) Returns transpose of a. realMatrix 

zeros(integer length) Returns a real vector of length length and 

all the elements set to 0.0. 
realVector 

zeros(real length) Returns a real vector of length length and 

all the elements set to 0.0. 
realVector 

zeros(integer row, integer 

col) 
Returns a real matrix of size row x col and 

all the elements set to 0.0. 
realMatrix 

zeros(real row, integer col) Returns a real matrix of size row x col and 

all the elements set to 0.0. 
realMatrix 

zeros(integer row, real col) Returns a real matrix of size row x col and 

all the elements set to 0.0. 
realMatrix 

zeros(real row, real col) Returns a real matrix of size row x col and 

all the elements set to 0.0. 
realMatrix 

 

Appendix C -- Library: Linear Algebra 
 

The Linear Algebra library composed of six classes: All, Utility, Linear Equations class, Linear 

Least Square class, Singular Value class, and Eigen class.  

C.1 Classes 

The table below lists the classes and their paths. 

Class Name Class Path 

All library.linear_algebra.All 

Linear Equations library.linear_algebra.LinearEquations 

Linear Least Square library.linear_algebra.LinearLeastSquare 

Eigen library.linear_algebra.Eigen 

Singular Value library.linear_algebra.SingularValue 

 

C.2 Functions 

The table below lists in alphabetical order the functions in the Utility class. 



Call Signature Description Return Type 

arrayToVec(array ar, boolean 

real, boolean imag, boolean 

comp) 

Returns a real or complex vector produced 

from the array input  ar.  The boolean 

parameters real, imag and comp 

indicates if the input  ar contains real, 

imaginary or complex elements. 

realVector 

or 

complexVector 

arrayToMat(array ar, boolean 

real, boolean comp) 
Returns a real or complex matrix produced 

from the array input  ar.  The boolean 

parameters real and comp indicates if the 

input  ar contains real or complex elements. 

realMatrix 

or 

complexMatrix  

diagonal(integer size, real 

value) 
Returns a diagonal real matrix of size size x 

size and the elements of the diagonal set to 

the values of the parameter value. 

realMatrix 

diagonal(real size, real 

value) 
Returns a diagonal real matrix of size size x 

size and the elements of the diagonal set to 

the values of the parameter value. 

realMatrix 

diagonal(real size, integer 

value) 
Returns a diagonal real matrix of size size x 

size and the elements of the diagonal set to 

the values of the parameter value. 

realMatrix 

diagonal(real size, real 

value) 
Returns a diagonal real matrix of size size x 

size and the elements of the diagonal set to 

the values of the parameter value. 

realMatrix 

divElemByElem(realVector 

left, realVector right)  
Returns a real vector whose elements are 

ratios of the corresponding elements of the 

parameters left and right. 

realVector 

divElemByElem(realMatrix 

left, realMatrix right)  
Returns a real matrix whose elements are 

ratios of the corresponding elements of the 

parameters left and right. 

realMatrix 

findNonZero(realVector v) Returns an array of long whose elements are 

indices of the non-zero elements of the 

parameter v. 

array  

of integers 

identity(integer size) Returns a diagonal real matrix of size size x 

size and the elements of the diagonal set to 

1.0. 

realMatrix 

identity(real size) Returns a diagonal real matrix of size size x 

size and the elements of the diagonal set to 

1.0. 

realMatrix 

isSquare(realMatrix a) Returns TRUE if the matrix in parameter a is 

square. Otherwise, returns FALSE. 
boolean 

isSymmetric(realMatrix a) Returns TRUE if the matrix in parameter a is 

symmetric. Otherwise, returns FALSE. 
boolean 

locate(realVector v, real d) Returns the matched index of the parameter d 

in the parameter vector v. 
integer 

multElemByElem(realVector 

left, realVector right)  
Returns a real vector whose elements are 

products of the corresponding elements of the 

parameters left and right. 

realVector 

multElemByElem(realMatrix Returns a real matrix whose elements are realMatrix 



left, realMatrix right)  products of the corresponding elements of the 

parameters left and right. 

ones(integer length) Returns a real vector of length length and 

all the elements set to 1.0. 
realVector 

ones(real length) Returns a real vector of length length and 

all the elements set to 1.0. 
realVector 

ones(integer row, integer 

col) 
Returns a real matrix of size row x col and 

all the elements set to 1.0. 
realMatrix 

ones(real row, integer col) Returns a real matrix of size row x col and 

all the elements set to 1.0. 
realMatrix 

ones(integer row, real col) Returns a real matrix of size row x col and 

all the elements set to 1.0. 
realMatrix 

ones(real row, real col) Returns a real matrix of size row x col and 

all the elements set to 1.0. 
realMatrix 

transpose(realMatrix a) Returns transpose of a. realMatrix 

zeros(integer length) Returns a real vector of length length and 

all the elements set to 0.0. 
realVector 

zeros(real length) Returns a real vector of length length and 

all the elements set to 0.0. 
realVector 

zeros(integer row, integer 

col) 
Returns a real matrix of size row x col and 

all the elements set to 0.0. 
realMatrix 

zeros(real row, integer col) Returns a real matrix of size row x col and 

all the elements set to 0.0. 
realMatrix 

zeros(integer row, real col) Returns a real matrix of size row x col and 

all the elements set to 0.0. 
realMatrix 

zeros(real row, real col) Returns a real matrix of size row x col and 

all the elements set to 0.0. 
realMatrix 

 

The table below lists in alphabetical order the functions in the Linear Equations class. 

Call Signature Description 
Return 

Type 

decomposeLUP(realMatrix A) Decomposes matrix A using LUP factorization. void 

determinant() Returns determinant of a matrix if the matrix is 

already been LUP factorized. 
real 

determinant(realMatrix A) Returns determinant after LUP factorizing matrix 

A. 
real 

inverse() Returns inverse of a matrix if the matrix is 

already been LUP factorized. 
realMatrix 

inverse(realMatrix A) Returns inverse after LUP factorizing matrix A. realMatrix 

lower() Returns the lower triangular matrix if the matrix 

is already been LUP factorized. 
realMatrix 

lup() Returns the lower triangular matrix, the upper 

triangular matrix, and the permutation matrix if 
array 



the matrix is already been LUP factorized. 

lup(realMatrix A) Returns the lower triangular matrix, the upper 

triangular matrix, and the permutation matrix 

after LUP factorizing matrix A. 

array 

permutation() Returns the permutation matrix if the matrix is 

already been LUP factorized. 
realMatrix 

solve(realMatrix A, 

realVector b) 
Returns the solution vector x of the equation Ax 

= b after LUP factorizing matrix A. 
realVector 

solve(realMatrix A, 

realMatrix B) 
Returns the solution matrix X of the equation AX 

= B after LUP factorizing matrix A. 
realMatrix 

solve(realVector b) Returns the solution vector x of the equation Ax 

= b if the matrix is already been LUP factorized. 
realVector 

solve(realMatrix B) Returns the solution matrix X of the equation AX 

= B if the matrix is already been LUP factorized. 
realMatrix 

trace() Returns trace of a matrix if the matrix is already 

been LUP factorized. 
real 

trace(realMatrix mat) Returns trace of a matrix after LUP factorizing 

matrix A.. 
real 

upper() Returns the upper triangular matrix if the matrix 

is already been LUP factorized. 
realMatrix 

 

The table below lists in alphabetical order the functions in the Linear Least Square class. 

Call Signature Description 
Return 

Type 

decomposeQR(realMatrix A) Decomposes matrix A using QR factorization. void 

inverseLS() Returns inverse of a matrix if the matrix is already been 

QR factorized. 
realMatrix 

getAid() Returns the diagonal elements of the upper triangular 

matrix produced during factorization. 
realVector 

getP() Returns P matrix. realMatrix 

getQ() Returns Q matrix. realMatrix 

getE() Returns R matrix. realMatrix 

getMaxEuclidNorm() Returns the maximum of the Euclidean norms of the 

columns of the given matrix. 
real 

getTolerance() Returns the relative tolerance used for calculating 

diagonal elements of the upper triangular matrix. 
real 

inverseLS(realMatrix A) Returns inverse after QR factorizing matrix A. realMatrix 

solveLS(realVector b) Returns the solution vector x of the equation Ax = b if 

the matrix is already been QR factorized. 
realVector 

setTolerance(real 

tolerance) 
 void 

solveLS(realMatrix A, 

realVector b) 
Returns the solution vector x of the equation Ax = b after 

QR factorizing matrix A. 
realVector 



solveLS(realMatrix A, 

integer n, realVector b) 
Returns the solution vector x of the equation Ax = b after 

QR factorizing matrix A with the orthogonal matrix Q of 

order n. 

realVector 

qr() Returns orthogonal matrices QR of a matrix if the matrix 

is already been QR factorized. 
array 

qr(realMatrix A) Returns orthogonal matrices Q, R after factorizing matrix 

A. 
array 

qrE(realMatrix A) Returns orthogonal matrices Q, R after producing an 

"economy-size" decomposition matrix A. 
array 

 
The table below lists in alphabetical order the functions in the Eigen class. 

Call Signature Description Return Type 

eigen(realMatrix A) 
Returns real or complex eigen values and 

corresponding real or complex eigen 

vectors of a real nxn matrix A. 

array  

(of realMatrix 

or 

complexMatrix) 

eigen(complexMatrix  A) 
Returns real or complex eigen values and 

corresponding real or complex eigen 

vectors of a complex nxn matrix A. 

array  

(of realMatrix 

or 

complexMatrix) 

eigenValue() Returns real or complex eigen values 

which already been computed by calling 

the function eigen(matrix A) or 

eigen(complexMatrix  A). 

realMatrix  

or 

complexMatrix 

eigenReal_vector() Returns real or complex eigen vectors 

which already been computed by calling 

the function eigen(matrix A) or 

eigen(complexMatrix  A). 

realMatrix  

or 

complexMatrix 

 

 

The table below lists in alphabetical order the functions for the Singular Value class. 

Call Signature Description Return Type 

decomposeSVD(realMatrix A) Decomposes real matrix A using SVD 

factorization. 
void 

decomposeSVD(complexMatrix A) Decomposes complex matrix A using SVD 

factorization. 
void 

getMinNonNegSingularValue() Returns the minimum non-negative 

singular value. 
real 

getU() 
Returns an m × m real or complex unitary 

matrix U. 

realMatrix  

or 

complexMatrix 

getS() Returns an m × n rectangular diagonal 

matrix S with non-negative real numbers 

realMatrix  

or 



on the diagonal. complexMatrix 

getV() 
Returns an n × n real or complex unitary 

matrix 

realMatrix  

or 

complexMatrix 

pseudoinverse() Returns a pseudo inverse of a real matrix if 

the matrix is already been SVD factorized. 
realMatrix 

pseudoinverse(realMatrix A) Returns a pseudo inverse of a real matrix 

after SVD factorizing matrix A. 
realMatrix 

rank() Returns the rank of a matrix if the matrix is 

already been SVD factorized. 
integer 

rank(realMatrix A) Returns the rank of a real matrix after SVD 

factorizing matrix A. 
integer 

rank(complexMatrix A) Returns the rank of a complex matrix after 

SVD factorizing matrix A. 
integer 

setMinNonNegSingularValue(real 

value) 
Sets the minimum non-negative singular 

value. 
void 

solvesvd(realVector b) Returns the solution vector x of the 

equation Ax = b if the matrix is already 

been SVD factorized. 

realVector 

solvesvd(realMatrix A, 

realVector b) 
Returns the solution vector x of the 

equation Ax = b after SVD factorizing 

matrix A. 

realVector 

svd() Returns an orthogonal m × m real or 

complex unitary matrix U, an m × n 

rectangular diagonal matrix S with non-

negative real numbers on the diagonal, and 

an orthogonal n × m real or complex 

unitary matrix V of a matrix if the matrix is 

already been SVD factorized. 

array  

(of realMatrix 

or 

complexMatrix) 

svd(realMatrix A) Returns an orthogonal m × m real matrix 

U, an m × n rectangular diagonal matrix S 

with non-negative real numbers on the 

diagonal, and an orthogonal n × m real 

matrix V of a real matrix A after SVD 

factorizing matrix A. 

array  

(of realMatrix 

or 

complexMatrix) 

svd(complexMatrix A) Returns an orthogonal m × m complex 

unitary matrix U, diagonal matrix S, and an 

orthogonal n × m real or complex unitary 

matrix V of a complex matrix A after SVD 

factorizing matrix A. 

array  

(of realMatrix 

or 

complexMatrix) 

  



Appendix D -- Library: Zero Min Max 
 

The Zero Min Max library contains two classes: RootFinder and Optimization.   

D.1 Classes 

The table below lists the classes and their paths. 

Class Name Class Path 

All library.zero_min_max_eval.All 

RootFinder library.zero_min_max.RootFinder 

Optimizer library.zero_min_max_eval.Optimizer 

 

 

D.2 Functions 

The table below lists in alphabetical order the functions in the Root Finder class. 

Call Signature Description Return Type 

bisection(String fcnName, 

real x1, real x2, real prec, 

int maxItarations) 

Returns zero crossing of a function using the 

Bisection method. Terminates when 

maxItarations reached. 

real 

bisection(String fcnName, 

real x1, real x2) 
Returns zero crossing of a function using the 

Bisection method. 
real 

bisection(String fcnName, 

real x1, real x2, real prec) 
Returns zero crossing of a function using the 

Bisection method. 
real 

bisection(real x1, real x2) Returns zero crossing of a function using 

Bisection method.  Valid after setting root 

finding method to Bisection. 

real 

bisection(real x1, real x2, 

real prec) 
Returns zero crossing of a function using 

Bisection method.  Valid after setting root 

finding method to Bisection. 

real 

getIterations() Return number of iterations used to find root. integer 

getMaxIterations() Return the maximum number of iterations 

will be used to find root. 
integer 

getPrecision() Returns relative precision used to determine 

convergence. 
real 

newton(String fcnName, real 

start, real prec) 
Returns zero crossing of a function using the 

Newton method. 
real 

newton(String fcnName, real 

start, real prec, int 

maxItarations) 

Returns zero crossing of a function using the 

Newton method. Terminates when 

maxItarations reached. 

real 

newton(String fcnName, real 

start) 
Returns zero crossing of a function using the 

Newton method.  
real 



newton(real start) Returns zero crossing of a function using the 

Newton method.  Valid after setting root 

finding method to Newton. 

real 

newton(real start, real prec) Returns zero crossing of a function using the 

Newton method.  Valid after setting root 

finding method to Newton. 

real 

roots(HYP_PolynomialValue 

poly) Returns roots of a polynomial. 

realVector  

or 

complexVector 

setMaxIterations(integer 

maxItarations) 
Sets the maximum number of iterations to be 

used. 
void 

setPrecision(real prec) Sets the relative precision to be used. void 

setFunction(String fcnName) Sets the function who’s roots will searched. void 

setBisection(String fcnName) Sets the method to be Bisection for a new 

function. 
void 

setBisection() Sets the method to be Bisection for an 

existing function. 
void 

setNewton(String fcnName) Sets the method to be Newton for a new 

function. 
void 

newton(real start) Sets the method to be Newton for an existing 

function. 
void 

 

 

The table below lists in alphabetical order the functions in the Optimization class. 

Call Signature Description 
Return 

Type 

optimize() Performs optimization. realVector 

powell(String fcnName, 

realVector guess) 
Sets the function to be optimized, sets the initial 

guess values and performs optimization using hill 

climbing method. 

realVector 

powell(String fcnName, 

realVector guess, integer 

maxIter) 

Sets the function to be optimized, sets the initial 

guess values and performs optimization using hill 

climbing method. Terminates when maxIter 

reached. 

realVector 

simplex(String fcnName, 

realVector guess) 

 

Sets the function to be optimized, sets the initial 

guess values and performs optimization using 

Simplex method 

realVector 

simplex(String fcnName, 

realVector guess, integer 

maxIter) 

 

Sets the function to be optimized, sets the initial 

guess values and performs optimization using 

Simplex method. Terminates when maxIter 

reached. 

realVector 

setFunction(String fcnName) Sets function to be optimized. void 

setGuess(realVector guess) Sets the initial guess values. void 

setOptimizer(String optName) Sets the optimization method. void 



setStrategy(String 

strategyName) 
Sets optimization strategy (minimize or 

maximize) 
void 

 



Appendix E -- Library: Analysis 
 

The Analysis library can be used to compute numerical derivatives and numerical integral of 

functions and to get solutions for ordinary differential equations (ODE).  The Analysis library 

contains four classes: All, Differentiator, Integrator, and ODE Solver. 

E.1 Classes 

The table below lists the classes and their paths. 

Class Name Class Path 

All library.analysis.All 

Differentiator library.analysis.Differentiator 

Integrator library.analysis.Integrator 

HYP_ODE library.analysis.HYP_ODE 

ODE_Solver library.analysis.ODE_Solver 

 

E.2 Functions 

The table below lists in alphabetical order the functions in the Differentiator class. 

Call Signature Description 
Return 

Type 

derivative(polynomial poly) Returns the derivative of a polynomial. polynomial 

dydx(String fcnSignature, 

real x, real stepSize) 
Returns the approximate derivative of a new 

function at x. 
real 

dydx(String fcnSignature, 

real x) 
Returns the approximate derivative of an existing 

function at x. 
real 

dydx(realVector X, realVector 

Y) 
Returns an approximate differentiation of Y with 

respect to X. 
realVector 

jacobian(String fcnSignature, 

realVector x) 
Returns an approximate partial derivative at x. realMatrix 

setStepSize(real stepSize) Sets the step size for differentiation or 

integration. 
void 

 

 

 

 

 



 

The table below lists in alphabetical order the functions in the Integrator class. 

Call Signature Description 
Return 

Type 

integral(polynomial poly, 

real constant) 
Returns the integral of a polynomial.  polynomial 

integral(polynomial poly, 

integer constant) 
Returns the integral of a polynomial.  polynomial 

integral(polynomial poly) Returns the integral of a polynomial.  polynomial 

quadrature(real a, real b) Returns approximate integral of a function from a 

to b using Quadrature method. 
real 

quadrature(String 

fcnSignature, real a, real b) 
Returns approximate integral of a function from a 

to b using Quadrature method. 
real 

romberg(real a, real b)  Returns approximate integral of a function from a 

to b using Romberg method. 
real 

romberg(String fcnSignature, 

real a, real b)  
Returns approximate integral of a function from a 

to b using Romberg method. 
real 

setFunction(String 

fcnSignature) 
Sets the integrand function. void 

simpson(real a, real b) Returns approximate integral of a function from a 

to b using Simpson method. 
real 

simpson(String fcnSignature, 

real a, real b) 
Returns approximate integral of a function from a 

to b using Simpson method. 
real 

simpsonRichardson(real a, 

real b) 
Returns approximate integral of a function from a 

to b using Simpson-Richardson method. 
real 

simpsonRichardson(String 

fcnSignature, real a, real b) 
Returns approximate integral of a function from a 

to b using Simpson-Richardson method. 
real 

trapeze(double from, double 

to) 
Returns approximate integral of a function from 

from to to using Simpson-Richardson method. 
real 

trapeze(String fcnSignature, 

double from, double to) 
Returns approximate integral of a function from 

from to to using Simpson-Richardson method. 
real 

tricub(real xi, real yi, real 

xj, real yj, real xk, real 

yk, real acc)  

Returns approximate definite double integral of a 

function over the triangular domain with vertices 

(xi,yi), (xj,yj), and (xk,yk) using Tricube 

method. 

real 

tricub(String fcnSignature, 

real xi, real yi, real xj, 

real yj, real xk, real yk, 

real acc)  

Returns approximate definite double integral of a 

function over the triangular domain with vertices 

(xi,yi), (xj,yj), and (xk,yk) using Tricube 

method. 

real 

 

The table below lists in alphabetical order the functions in the HYP_ODE class. 

Call Signature Description Return 



Type 

setDiffFcn(String 

odeSignature) 
Sets up the differential equation function. void 

computeDerivative() Computes derivative for ODE real 

 

The table below lists in alphabetical order the functions in the ODE Solver class. 

Call Signature Description 
Return 

Type 

euler(String odeSignature, 

real start, real stop, real 

stepSize, realVector   

initVec) 

Returns solution of an ordinary differential 

equation. 
realMatrix 

setStepSize(real stepSize) Sets the step size for differentiation or 

integration. 
void 

 

  



Appendix F -- Library: Estimation 
 

The Estimation library can be used to compute interpolation, polynomial least square fit, and 

linear regression.  The Estimation library contains four classes: All, Interpolator, 

PolynomialLeastSquare, and LinearRegression.   

F.1 Classes 

The table below lists the libraries and their class paths. 

Class Name Class Path 

All library.estimation.All 

Interpolator library.estimation.Interpolator 

Linear Regression library.estimation.LinearRegression 

Polynomial 

Regression 
library.estimation.PolynomialRegression 

 

F.2  Functions 

The All class contains functions of the other three classes in the Estimation library. When more 

than one class have functions of the same name, the function names are modified in the All class.  

The table below list these name changes. 

All Polynomial Regression Linear Regression 
getErrorMatrix() getPolyErrorMAtrix() getErrorMatrix() 

 

The table below lists in alphabetical order the functions in the Interpolator class. 

Call Signature Description 
Return 

Type 

interpolate(real a) Returns interpolated value corresponding to a, 

for independent vector x, dependent vector y, and 

the interpolator already been set. 

real 

lagrange(realVector x, 

realVector y, real a) 
Returns interpolated value corresponding to a, for 

independent vector x and dependent vector y, 

using Lagrange Interpolator. 

real 

linear(realVector x, 

realVector y, real a) 
Returns interpolated value corresponding to a, for 

independent vector x and dependent vector y, 

using Linear Interpolator. 

real 

linear(realVector x, 

realVector y, real a, integer 

index) 

Returns interpolated value corresponding to a, for 

independent vector x and dependent vector y, 

using Linear Interpolator and pre-computed index 

real 



for the independent vector.  

neville(realVector x, 

realVector y, real a) 
Returns interpolated value corresponding to a, for 

independent vector x and dependent vector y, 

using Neville Interpolator. 

real 

newton(realVector x, 

realVector y, real number) 
Returns interpolated value corresponding to a, for 

independent vector x and dependent vector y, 

using Newton Interpolator. 

real 

resetCoefficients() If the interpolator is set to Newton Interpolator, 

Resets coefficients. 
void 

setLagrange(realVector x, 

realVector y) 

 

Sets to interpolator to the Lagrange Interpolator 

for vector x and vector y. 
void 

setLinear(realVector x, 

realVector y) 

 

Sets to interpolator to the Linear Interpolator for 

vector x and vector y. 
void 

setNeville(realVector x, 

realVector y) 
Sets to interpolator to the Neville Interpolator for 

vector x and vector y. 
void 

setNewton(realVector x, 

realVector y) 
Sets to interpolator to the Newton Interpolator for 

vector x and vector y. 
void 

setSpline(realVector x, 

realVector y) 
Sets to interpolator to the Spline Interpolator for 

vector x and vector y. 
void 

spline(realVector x, 

realVector y, real a) 
Returns interpolated value corresponding to a, for 

independent vector x and dependent vector y, 

using Spline Interpolator. 

real 

spline (realVector x, 

realMatrix y, real a) 
Returns 2-dimensional interpolated value 

corresponding to a, for independent vector x and 

dependent matrix y, using Spline Interpolator. 

real 

valueAndError(real a) If the interpolator is set to Neville Interpolator, 

returns the interpolated value and error 

corresponding to a,for independent vector x and 

dependent vector y already been set. 

realVector 

 

The table below lists in alphabetical order the functions in the Linear Regression class. 

Call Signature Description 
Return 

Type 

getCorrelationCoefficient() Returns correlation coefficient. real 

getErrorMatrix() Returns error matrix. realMatrix 

getIntercept() Returns intercept value. real 

getPolynomial() Returns polynomial polynomial 

getSlope() Returns slope value. real 

linearRegression(realVector 

vecX, Real_vector vecY) 
Returns a polynomial corresponding to 

independent vector x and dependent vector y, 

estimated using Linear Regression. 

polynomial 

 



The table below lists in alphabetical order the functions in the Polynomial Regression class. 

Call Signature Description 
Return 

Type 

getErrorMatrix() Returns error matrix. realMatrix 

polynomialLSFit (realVector 

vecX, realVector vecY, 

integer n) 
Returns least square estimated polynomial. polynomial 

polyError(real x) Return error value. real 

 

  

  



Appendix G -- Library: Stochastic 
 

The Stochastic library can be used for probability and statistical computations.  Stochastic library 

contains sixteen classes. 

G.1 Classes 

The table below lists the classes in the Stochastic library and their paths. 

Class Name Class Path 

Histogram library.stochastic.Histogram 

BetaDistribution library.stochastic.BetaDistribution 

CauchyDistribution library.stochastic.CauchyDistribution 

ChiSquareDistribution library.stochastic.ChiSquareDistribution 

ExponentialDistribution library.stochastic.ExponentialDistribution 

FisherSnedecorDistribution library.stochastic.FisherSnedecorDistribution 

FisherTippettDistribution library.stochastic.FisherTippettDistribution 

GammaDistribution library.stochastic.GammaDistribution 

HistogrammedDistribution library.stochastic.HistogrammedDistribution 

LaplaceDistribution library.stochastic.LaplaceDistribution 

LogNormalDistribution library.stochastic.LogNormalDistribution 

NormalDistribution library.stochastic.NormalDistribution 

ProbabilityDistribution library.stochastic.ProbabilityDistribution 

StudentDistribution library.stochastic.StudentDistribution 

TriangularDistribution library.stochastic.TriangularDistribution 

UniformDistribution library.stochastic.UniformDistribution 

WeibullDistribution library.stochastic.WeibullDistribution 

 

 

G.2 Functions 

The table below lists in alphabetical order the functions for the Histogram class. 

Call Signature Description Return Type 

average()  real 

average(realVector vec)  real 

binContent(real x)  real 

binIndex(real x)  integer 

binParameters(real x)  realVector 

binWidth()  real 



count()  integer 

countsBetween(real x, real y)  real 

countsUpto(real x)  real 

dimension()  real 

errorOnAverage()  real 

kurtosis()  real 

maximum()  real 

minimum()  real 

overflow()  integer 

processData(realVector vec)  void 

range()  realVector 

reset()  void 

setGrowthAllowed()  void 

setIntegerBinWidth()  void 

size()  integer 

skewness()  real 

standardDeviation()  real 

totalCount()  integer 

underflow()  integer 

variance()  real 

xValueAt(integer index)  real 

yValueAt(integer index)  real 

 

The table below lists in alphabetical order the functions common to all the probability 

distributions. 

Call Signature Description Return Type 

approximateValueAndGradient(

real x) 
Returns an approximation of the gradient. realVector 

average() Returns the average of the distribution. real 

distributionName() Returns the name of the distribution. String 

distributionValue(real x) Returns the probability of finding a random 

variable smaller than or equal to x. 
real 

distributionValue(real x1, 

real x2) 
Returns the probability of finding a random 

variable between x1 and x2. 
real 

eval(real x) Returns probability density function real 

inverseDistributionValue 

(real x) 
Returns the value for which the distribution 

function is equal to x. 
real 

kurtosis() Returns kurtosis of the distribution. real 

parameters() Returns parameters for the selected distribution. realVector 

random() Returns a random number according to the set real 



distribution. 

random(integer l) Returns real vector of length l whose elements 

are random numbers according to the set 

distribution. 

realVector 

random(real l) Returns real vector of length l whose elements 

are random numbers according to the set 

distribution. 

realVector 

random(integer m, integer n) Returns real matrix of size mxn whose elements 

are random numbers according to the set 

distribution. 

realMatrix 

random(integer m, real n) Returns real matrix of size mxn whose elements 

are random numbers according to the set 

distribution. 

realMatrix 

random(real m, integer n) Returns real matrix of size mxn whose elements 

are random numbers according to the set 

distribution. 

realMatrix 

random(real m, real n) Returns real matrix of size mxn whose elements 

are random numbers according to the set 

distribution. 

realMatrix 

setHistogram(Histogram 

histo) 
Sets the parameters of the distribution 

according from the histogram histo.  
void 

setParameters(realVector  

params) 
Sets the parameters of the distribution 

according to params.  
void 

setSeed(integer seed) Sets the seed of the random number generator. void 

skewness() 

 
Returns skewness for the distribution. real 

standardDeviation() Returns standards deviation of the distribution 

from variance. 
real 

valueAndGradient(real x) Returns the value and the gradient of the 

distribution with respect to the parameters. 
realVector 

variance() Returns the variance of the distribution. real 

 

The table below lists in alphabetical order the functions pertinent to the Cauchy distribution. 

Call Signature Description 
Return 

Type 

setCenter(real center) Sets center value for Cauchy 

Distribution.  Valid for Cauchy 

Distribution only. 

void 

setWidth(real width) Sets beta value for Cauchy Distribution.  

Valid for Cauchy Distribution only. 
void 

 

The table below lists in alphabetical order the functions for the Chi-Squared distribution. 



Call Signature Description 
Return 

Type 

confidenceLevel(real x) Set the confidence level to x. Only valid for Chi 

Square, Fisher Snedecor, and Student 

distributions. 

real 

setDegreesOfFreedom(int n) Valid only for Chi Square Distribution. void 

 

 

 

 

 

 

The table below lists in alphabetical order the functions pertinent to the Fisher Snedecor 

distribution. 

Call Signature Description 
Return 

Type 

defineParameters (integer n1, 

integer n2) 
Define parameters for FisherSnedecor 

distribution. 
void 

confidenceLevel(real x) Set the confidence level to x. Only valid for Chi 

Square, Fisher Snedecor, and Student 

distributions. 

real 

 

The table below lists in alphabetical order the functions pertinent to the Fisher Tippett 

distribution. 

Call Signature Description 
Return 

Type 

defineParameters(real center, 

real scale) 
Define parameters for Fisher Tippett 

distribution. 
void 

 

The table below lists in alphabetical order the functions pertinent to the Gamma distribution. 

Call Signature Description 
Return 

Type 

defineParameters(real shape, 

real scale) 
Define parameters for Gamma distribution. void 

 



The table below lists in alphabetical order the functions pertinent to the Laplace distribution. 

Call Signature Description 
Return 

Type 

defineParameters(real center, 

real scale) 
Define parameters for Laplace distribution. void 

 

The table below lists in alphabetical order the functions pertinent to the Normal distribution. 

Call Signature Description 
Return 

Type 

errorFunction(real x) Returns error function for the Normal 

distribution. 
real 

eval(real x) Returns probability density function real 

evalNormal(real x) Returns the density function for a (0,1) Normal 

distribution evaluated at x. 
real 

setAverage( real average) Set the average value for the Normal 

Distribution. Valid only for the Normal 

Distribution. 

void 

setParameters(realVector params) Set parameters void 

setStandardDeviation( real 

standardDeviation) 
Set the standard deviation value for the Normal 

Distribution. Valid only for the Normal 

Distribution. 

void 

 

The table below lists in alphabetical order the functions pertinent to the Student distribution. 

Call Signature Description 
Return 

Type 

confidenceLevel(real x) Set the confidence level to x. Only valid for Chi 

Square, Fisher Snedecor, and Student 

distributions. 

real 

defineParameters(integer n) Define parameters for Student distribution. void 

eval(real x) Returns probability density function real 

 

The table below lists in alphabetical order the functions pertinent to the Uniform distribution. 

Call Signature Description 
Return 

Type 

eval(real x) Returns probability density function real 

setLimits(real low, real high) Sets the lower and upper limits for the Uniform 

distribution. 
void 

 



The table below lists in alphabetical order the functions pertinent to the Weibull distribution. 

Call Signature Description 
Return 

Type 

defineParameters(real shape, 

real scale) 
Define parameters for Weibull 

distribution. 
void 

 

The Probability Distribution class combines all the separate distributions in one single class.  

Any of the distributions can be used from the Probability Distribution class.  The Probability 

Distribution class contains all the methods listed in the previous tables plus some extra functions.  

The table below lists in alphabetical order the functions special to the Probability Distribution 

class. 

 

Call Signature Description 
Return 

Type 

average() Returns average value real 

beta(real shape1, real shape2) Returns a random number according to Beta 

Distribution with shape1 set to shape1 and 

shape2 set to shape2. 

real 

cauchy(double location, double 

scale) 
Returns a random number according to 

Cauchy distribution. 
real 

chiSquare(integer dof) Returns a random number according to Chi 

Square Distribution with degrees-of-freedom 

set to dof. 

real 

confidenceLevel(real x) Return confidence level real 

defineParameters(double 

shapeOrCenter, double scale) 
Defines parameters for Gamma, Fisher 

Tippett, or Laplace distribution. 
void 

defineParameters(integer n) Defines parameter for Student distribution void 

defineParameters(integer n1, 

integer n2) 
Defines parameter for Fisher Snedecor 

distribution 
void 

   distributionName() Returns name of the distribution string 

   distributionValue(real x) Returns the value of the distribution. real 

   distributionValue(real x1, real 

x2) 
Returns the difference between the values of 

the distribution due to x1 and x2. 
real 

   eval(real x) Evaluates Uniform, Gamma, or  Student 

distribution for the value of x 
real 

exponential(real rate) Returns a random number according to 

Exponential Distribution with rate set rate. 
real 

fisherSnedecor(integer dof1, 

integer dof2) 
Returns a random number according to Fisher 

Snedecor Distribution with the first degrees-

of-freedom set to dof1 and the second 

degrees-of-freedom set to dof2. 

real 



fisherTippett(real center, real 

scale) 
Returns a random number according to Fisher 

Tippett Distribution with the center set to 

center and the scale set to scale. 

real 

gamma(real shape1, real scale) Returns a random number according to 

Gamma Distribution with the shape1 set to 

shape1 and the scale set to scale. 

real 

inverseDistributionValue(real x) Returns the inverse value real 

kurtosis() Return kurtosis. real 

laplace(real center, real scale) Returns a random number according to 

Laplace Distribution with the center set to 

center and the scale set to scale. 

real 

logNormal() Returns a random number according to Log 

Normal Distribution with mean set to 0.0 and 

standard  deviation set to 1.0. 

real 

logNormal(real mean, real 

stdDev) 
Returns a random number according to Log 

Normal Distribution with mean set to mean 

and standard  deviation set to stdDev. 

real 

Normal() Returns a random number according to 

Normal Distribution with mean set to 0.0 and 

standard  deviation set to 1.0 

real 

normal( real mean, real stdDev) Returns a random number according to 

Normal Distribution with mean set to mean 

and standard  deviation set to stdDev. 

real 

parameters() Returns the parameters of the distribution. realVector 

random() Returns a random value for the distribution 

that has already been set. 
real 

setAverage(real average) Sets average for ormal distribution. void 

setBeta(real shape1, real 

shape2) 
Sets the distribution to Beta Distribution with 

shape1 set to shape1 and shape2 set to 

shape2. 

void 

setBeta(Histogram histo) Sets the distribution to Beta Distribution from 

a histogram. 
void 

setCauchy(real center, real 

width) 
Sets the distribution to Cauchy Distribution 

with center set to center and scale set to 

scale. 

void 

setCauchy(Histogram histo) Sets the distribution to Cauchy Distribution 

from a histogram. 
void 

setCenter(real center) Sets center for the Cauchy Distribution. void 

setChiSquare(Histogram histo) Sets the distribution to Chi Square 

Distribution from a histogram. 
void 

setChiSquare(integer dof) Sets the distribution to Chi Square 

Distribution with degrees-of-freedom set to 

dof. 

void 

setDegreesOfFreedom(integer n) Sets degrees-of-freedom for Chi Square 

Distribution 
void 

setExponential(real rate) Sets the distribution to Exponent Distribution void 



with rate set to rate. 

setExponential(Histogram histo) Sets the distribution to Exponent Distribution 

from a histogram. 
void 

setFisherSnedecor(Histogram 

histo) 
Sets the distribution to Fisher Snedecor 

Distribution from a histogram. 
void 

setFisherSnedecor(integer dof1, 

integer dof2) 
Sets the distribution to Fisher Snedecor 

Distribution with the first degrees-of-freedom 

set to dof1 and the second degrees-of-

freedom set to dof2. 

void 

setFisherTippett(real center, 

real scale) 
Sets the distribution to Fisher Tippett 

Distribution with center set to center and 

scale set to scale. 

void 

setFisherTippett(Histogram 

histo) 
Sets the distribution to Fisher Tippett 

Distribution from a histogram. 
void 

setGamma(real shape1, real 

scale) 
Sets the distribution to Gamma Distribution 

with shape set to shape1 and scale set to 

scale.  

void 

setGamma(Histogram histo) Sets the distribution to Gamma Distribution 

from a histogram.  
void 

setHistogram(Histogram histo) Sets histogram for the distribution void 

setLaplace(real center, real 

scale) 
Sets the distribution to Laplace Distribution 

with center set to center and scale set to 

scale. 

void 

setLaplace(Histogram histo) Sets the distribution to Laplace Distribution 

from a histogram. 
void 

setLogNormal() Sets the distribution to Log Normal 

Distribution with mean set to 0.0 and 

standard  deviation set to 1.0. 

void 

setLogNormal(real mean, real 

stdDev) 
Sets the distribution to Log Normal 

Distribution with mean set to mean and 

standard  deviation set to stdDev. 

void 

setLogNormal(real mean, real 

stdDev) 
Sets the distribution to Log Normal 

Distribution from a histogram. 
void 

setNormal(Histogram histo) Sets the distribution to Normal Distribution 

with mean set to 0.0 and standard  deviation 

set to 1.0. 

void 

setNormal(real mean, real 

stdDev) 
Sets the distribution to Normal Distribution 

with mean set to mean and standard  

deviation set to stdDev. 

void 

setNormal(Histogram histo) Sets the distribution to Normal Distribution 

from a histogram. 
void 

setParameters(realVector params) Sets parameters for the distribution void 

setSeed(integer seed) Sets seed for the distribution. void 

setStandardDeviation(real 

standardDeviation) 
Sets standard deviation for the Normal 

distribution 
void 

setStudent(Histogram histo) Sets the distribution to Student Distribution void 



from a histogram. 

setStudent(integer dof) Sets the distribution to Student Distribution 

with degrees-of-freedom set to dof. 
void 

setTriangular(real low, real 

high, real peak) 
Sets the distribution to Triangular 

Distribution with the low set to low, high 

set to high and the peak set to peak. 

void 

setTriangular(Histogram histo) Sets the distribution to Triangular 

Distribution from a histogram. 
void 

setUniform() 

 
Sets the distribution to Uniform Distribution.  

Generated random numbers will be between -

1.0 and 1.0.   

void 

setUniform(real a, real b) Sets the distribution to Uniform Distribution 

with lower and upper limits of the generated 

random number set to a and b.   

void 

setUniform(Histogram histo) Sets the distribution to Uniform Distribution 

from a histogram.   
void 

setWeibull(real shape1, real 

scale) 
Sets the distribution to Weibull Distribution 

with shape set to shape1 and scale set to 

scale. 

void 

setWeibull(Histogram histo) Sets the distribution to Weibull Distribution 

from a histogram. 
void 

setWidth(real width) Set width to Cauchy Distribution void 

skewness() Return skewness. real 

standardDeviation() Return standard deviation, real 

   

student(int dof) Returns a random number according to 

Student Distribution with degrees-of-freedom 

set to dof. 

real 

triangular(real low, real high, 

real peak) 
Returns a random number according to 

Triangular Distribution with the low set to 

low, high set to high and the peak set to 
peak. 

real 

uniform() Returns a random number according to 

Uniform Distribution with the range set to 

between -1.0 and 1.0. 

real 

uniform(real a, real b) Returns a random number according to 

Uniform Distribution with the with range set 

to between a and b. 

real 

valueAndGradient(double x) Returns value and gradient from the 

distribution.. 
realVector 

variance() Returns variance from the distribution. real 

weibull(real shape1, real scale) Returns a random number according to 

Weibull Distribution with the shape1 set to 

shape1 and the scale set to scale. 

real 

 



 

 

  



Appendix H -- Library: Frequency Domain 
 

The Frequency Domain library contains one class, FFT. 

H.1 Classes 

The table below lists the classes and their paths. 

Class Name Class Path 

FFT library.frequency_domain.FFT 

 

 

H.2 Functions 

The table below lists in alphabetical order the functions in the FFT class. 

Call Signature Description Return Type 

fft(realVector real) Returns a complex vector whose elements have 

been Fourier transformed from a real vector.  The 

length of the output vector is the same as the 

length of the input vector. 

complexVector 

fft(table real) Returns a complex vector whose elements have 

been Fourier transformed from a real vector.  The 

length of the output vector is the same as the 

length of the input vector. 

complexVector 

fft(realVector real, 

realVector imag) 
Returns a complex vector whose elements have 

been transformed from a complex vector whose 

real and imaginary parts are given in real and 

imag.  The length of the output vector is the same 

as the length of the input vector. 

complexVector 

fft(complexVector vec) Returns a complex vector whose elements have 

been transformed from a complex vector.  The 

length of the output vector is the same as the 

length of the input vector. 

complexVector 

fft (table real, table 

imag) 
Returns a complex vector whose elements have 

been transformed from a complex vector whose 

real and imaginary parts are given in real and 

imag.  The length of the output vector is the same 

as the length of the input vector. 

complexVector 

fft(realVector real, 

integer n) 
Returns a complex vector whose elements have 

been Fourier transformed for n data points from a 

real vector.  The length of the output vector is n. 

complexVector 

fft(table real, integer 

n) 
Returns a complex vector whose elements have 

been Fourier transformed for n data points from a 

real vector.  The length of the output vector is n. 

complexVector 

fft(realVector real, Returns a complex vector whose elements have complexVector 



realVector imag, integer 

n) 
been Fourier transformed for n data points from a 

complex vector whose real and imaginary parts are 

given in real and imag.  The length of the 

output vector is n. 

fft(complexVector vec, 

integer n) 
Returns a complex vector whose elements have 

been Fourier transformed for n data points from a 

complex vector.  The length of the output vector is 

n. 

complexVector 

fft (table real, table 

imag, integer n) 
Returns a complex vector whose elements have 

been Fourier transformed for n data points from a 

complex vector whose real and imaginary parts are 

given in real and imag.  The length of the 

output vector is n. 

complexVector 

 


