Hyper

An Object Oriented Scripting Language

Reference Manual

Shaheen Hoque

8/6/2017

Developed by Shaheen Hoque, Hyper is a general purpose object oriented interpreted scripting language with an emphasis on technical computation. Hyper combines powerful object oriented programming (OOP) with an easy to use interpretive environment.

Contents

Table of Contents

1 Introduction 5
2 Interactive Commands 5
3 Utility Functions 7
4 Syntax 8
4.1 Lexical Conventions 8
4.1.1 Comments: 8
4.1.2 Reserved Words: 8
4.1.3 Literals: 9
4.1.4 Identifier: 10
4.1.5 Operators: 11
4.2 Data Types. 11
4.2.1 Boolean 12
4.2.2 Character 13
4.2.3 String 13
4.2.4 Integer 14
4.2.5 Real 14
4.2.6 Imaginary 15
4.2.7 Complex 15
4.2.8 Quaternion. 16
4.2.9 Polynomial 17
4.2.10 Rational 19
4.2.11 Range 19
4.2.12 Vector. 21
4.2.13 Matrix 26
4.2.14 Array 40
4.2.15 Table 41
4.3 Statements 41
4.3.1 Expression 41
4.3.2 Control Flow Statements 42
4.3.3 Try Catch Finally Statements 46
4.4 Functions 47
4.4.1 Declaration 47
4.4.2 Call 48
4.5 Class 49
4.6 Import 50
4.6.1 Import Script 50
4.6.2 Import Java 51
5 Class Libraries 52
5.1 General Math 53
5.2 Linear Algebra 54
5.2.1 Utility 54
5.2.2 Linear Equations 54
5.2.3 Linear Least Squares 56
5.2.4 Eigen 58
5.2.5 Singular Value 59
5.3 Zero Min Max 61
5.3.1 Root Finder 62
5.3.2 Optimizer 63
5.4 Analysis 65
5.4.1 Differentiator 65
5.4.2 Integration 68
5.4.3 Ordinary Differential Equation 70
5.5 Estimation 72
5.5.1 Interpolation 72
5.5.2 Linear Regression 75
5.5.3 Polynomial Regression 77
5.6 Stochastic 78
5.6.1 Statistics 79
5.6.2 Probability 82
5.7 Frequency Domain 101
5.7.1 FFT 101
Appendix A -- Library: General Math 103
Appendix B -- Library: Math2 135
Appendix C -- Library: Linear Algebra 136
Appendix D -- Library: Zero Min Max 142
Appendix E -- Library: Analysis. 145
Appendix F -- Library: Estimation 148
Appendix G -- Library: Stochastic 151
Appendix H -- Library: Frequency Domain 161

1 Introduction

Hyper is a general-purpose object oriented interpreted scripting language with an emphasis on technical computation. Hyper combines powerful object-oriented programming (OOP) with an easy to use interpretive environment. Hyper can be used in two different modes: interactive and batch script. In the interactive mode, the user can type a command or a statement in a console and get the output immediately. In the batch script mode, the user can write a script and run the script by typing the name of the script file in the consol. The interactive mode has some shelllike commands (similar to Linux/Unix/DOS) which provide utility functions. The syntax of Hyper is similar to the syntax of Java, with some exceptions. In addition to the scripting, programs can also be written in Java, compiled and imported into the Hyper's interpretive environment. The imported classes in the compiled java binary can be accessed as easily as accessing the classes written in Hyper scripting language. In fact, any pre-compiled java classes can be accessed this way, including all the public classes in the Java API. Hyper is fully integrated with the java APIs.

Hyper is a full fledge object oriented language. The object-oriented features such as encapsulation, inheritance, and polymorphism are implemented using classes and objects. It features try catch and finally. It also features strong typing with default parameter values and multiple parameters return from a function call. Hyper supports a rich set of data types related to mathematics and other technical computation, such as Complex, Matrix, Polynomial and several others, in addition to the data types found in a typical programming language. Hyper features a large library of functions, such as Linear Algebra, Probability and Statistics, in addition to the basic math functions.

This document is a reference manual for the Hyper language. It's not intended to be a tutorial. A separate tutorial will be produced at a later time. Section 2 and 3 describes shell commands and utility functions. Section 4 describes the syntax of Hyper language. Section 5 describes the class libraries. Appendices A-G provides detail documentations of the function call signatures of the class libraries.

2 Interactive Commands

The following commands can be used in the interactive mode:

Command	Argument	Description
<dath>		Changes default directory Path can be specified in the similar fashion as in DOS or Unix. ".." implies path for the directory above the current directory.

clear	<filter>	Clears variable(s) from the workspace Filter can be keywords, "all", "var", "fcn", "lib", and "screen" or partial variable name with single (?) or multiple (*) wild cards. "all" implies everything in the workspace. "var" implies only variables. "fcn" implies functions. "lib" implies imported Java library. "screen" implies the console output screen.
15	<filter>	Prints in a table format the list of the files in the current working directory. Filter can be partial file name with single (?) or multiple (*) wild cards used in a similar fashion to DOS or Unix. If no filter is used, the entire list will be printed.
lsd	$\begin{aligned} & \text { <filter> } \\ & \text { <sort key> } \end{aligned}$	Prints in a detailed format the list of the files in the current working directory. Detailed format consists of 4 columns: Name, Type, Size, and Date Modified. Filter usage is the same as in "ls" command. An optional second argument can be used as a sort key. An optional Plus("+") or minus ("-") character can be used before the sort key to sort in ascending or descending order. The default sort order is ascending. The following sort keys can be used: "name", "type", "size", and "date". The default sort key is "name".
pwd	none	Print the working directory
ws	<filter>	Prints in a table format the list of variables in the current workspace. Filter can be keywords, "all", "var", "fcn" and "lib" or partial variable name with single (?) or multiple (*) wild cards. "all" implies everything in the workspace. "var" implies only variables. "fcn" implies only functions. "lib" implies only imported Java library. If no filter is used, only the variables will be printed. (Same as using the "var" filter)
wsd	<filter>	Prints in a detailed format the list of variables in the current workspace.

		Detailed format consists of 2 columns: Name and Type. Filter usage is the same as in "ws" command.
wsv	<filter>	Prints in a detailed format the list of variables in the current workspace. Detailed format consists of 3 columns: Name and Type, and Value. Filter usage is the same as in "ws" command.

Text between the angle brackets (<>) are provided by the user. Although these commands cannot be accessed from the script, but there are equivalent functions that can be called from the script to obtain similar results. These functions are called Utility functions. For example, to change directory in the interactive mode, the user can type the following command:
cd .. \abc
But when writing a script, the user needs to call the following function:
changedir("..\abc");
More details of the Utility functions are described in the next section.

3 Utility Functions

Utility functions for Hyper are listed alphabetically in the table below:

Call Signature		Return Type
changedir (<path>)	Changes the working directory according to <path>	void
clearws (<var list>)	Clears the variables in the <var list> from the work space.	void
exec (<Script name>)	Executes the named script.	void
getworkingdir ()	Returns the path of the current working directory.	string
listdir (<filter>)	Returns a filtered list of the files in the current working directory.	list
maxdigits (<arg>)	Sets the maximum number of digits after the decimal point corresponding to the absolute value of the parameter <arg>. <arg> can be a long value, or a double value. If double value used, the fractional part is ignored. lif no argument or more than 1 argument used, the current maximum number of digits is displayed.	integer
notation (<arg>)	Sets the output notation in one of the following formats: REGULAR, SCIENTIFIC, or ENGINEERING. The output format can be specified by using the parameter <arg>. <arg> can be a string, an integer value, or a real value. "regular", reg", l, 1.0 corresponds to the notation REGULAR. "scientific", "sci", 2, 2.0 corresponds to the notation SCIENTIFIC. "regular",	

	reg", 1, 1.0 corresponds to the notation REGULAR. "engineering","eng",3, 3.0 corresponds to the notation ENGINEERING. String arguments are case insensitive. If no argument or more than 1 argument used, the current notation is displayed.	
print (<arg>)	Prints the argument. The argument can be a string or a variable.	void

4 Syntax

4.1 Lexical Conventions

4.1.1 Comments:

Comments : "//"
Two forward slashes used to comment out the texts after the double slashes in a given line. This is similar to the comments used in Java and C++ languages.

Example:

// This is a comment.
4.1.2 Reserved Words:

RESERVED WORDS:

"break"
"catch"
"class"
"default"
"else"
"finally"
"for"
"function"
"if"
"import"
"in"
"loop"
"switch"
"return"
"throw"
"try"
"while"
4.1.3 Literals:

4.1.3.1 Decimal Literal:

DECIMAL_LITERAL: ["1"-"9"] (["0"-"9"])*
HEX_LITERAL: "0" ["x","X"] (["0"-"9","a"-"f","A"-"F"])+
OCTAL_LITERAL: "0" (["0"-"7"])*
FLOATING_POINT_LITERAL:
(["0"-"9"])+ "." (["0"-"9"])* (<EXPONENT>)?
| "." (["0"-"9"])+ (<EXPONENT>)?
| (["0"-"9"])+ <EXPONENT>
EXPONENT: ["e","E"] (["+","-"])? (["0"-"9"])+
Example:
-1.602E-19

4.1.3.2 Character Literal:

CHARACTER_LITERAL:

```
"'"
( (~["'","\\","\n","\r"])
    | ("\\"
        ( ["n","t","b","r","f","v","\\","'","\""]
        | ["0"-"7"] (["0"-"7"] )?
        | ["x","X"] ["0"-"9","a"-"f","A"-"F"] (["0"-"9","a"-"f","A"-"F"])?
        )
    )
)
"'"
```

Examples:

```
`c'
'5'
```


4.1.3.3 String Literal:

STRING_LITERAL:

```
    "\""
    ( (~["\"","\\","\n","\r"])
        | ("\\"
            (["n","t","b","r","f","v","\\","","\""]
            | ["0"-"7"] (["0"-"7"] )?
            | ["x","X"] ["0"-"9","a"-"f","A"-"F"] (["0"-"9","a"-"f","A"-"F"])?
            )
        )
    )*
    "\""
```


Example:

"This is a String"
"This is a String with a carriage return $\backslash n$ "
"This is a String with a back slash
"
4.1.4 Identifier:

IDENTIFIER: <LETTER> (<LETTER>|["0"-"9"])*

Example:

Abc_123

LETTER: ["_","a"-"z","A"-"Z"]

DIGIT: ["0"-"9"] >

Separators: [",", ";", "(" , ")", " \{", "\}", "[", "]", ".", "::",]

4.1.5 Operators:

Operators:

Symbol	Operation	
"="	Assignment	
">"	Greater than	
"<"	Less than	
"!"	Not	
"=="	Equal	
"<="	Less than or equal	
">="	Greater than or equal	
"!="	Not equal	
$" \\| "$	Or	
"\&\&"	And	
"+"	Plus	
$"-"$	Minus	
"*"	Multiply	
"/"	Divide	
$" \wedge "$	Exponent	
"\%"	Remainder	
$": "$	Range	

4.2 Data Types

Hyper supports the following data types:

- Boolean
- Character
- String
- Numeric
- Integer
- Real
- Imaginary
- Complex
- Quaternion
- Polynomial
- Rational
- Range
- Vector
- Real Vector
- Complex Vector
- Quaternion Vector
- Polynomial Vector
- Rational Vector
- Matrix
- Real Matrix
- Complex Matrix
- Quaternion Matrix
- Polynomial Matrix
- Rational Matrix
- Array
- Table
- Class

Variables representing the data types have attributes that can be used to obtain various properties of a variable. All data types share some common attributes, and some data types have special attributes. These attributes can be accessed using dot notation as below:

```
<another var> = <var>.<attribute>;
or
<another var> = <var>.<attribute>(<param_1>, ..., <param_n");
```

The common attributes are given in the table below:

Call Signature	Description	Return Type
type	Returns the name of the type of the variable.	string
isA (type)	Returns TRUE if the parameter type is the type of the variable, and returns FALSE otherwise.	boolean

4.2.1 Boolean

boolean: "True"|"False"
A variable, <var>, can be defined as boolean by following ways:

```
<var> = boolean();
```

or

```
<var> = <boolean value>;
```


Examples:

$b=$ boolean (1); -> b = true.

```
b = boolean(0); -> b = false.
b = True;
b = false;
```


4.2.2 Character

Character: CHARACTER_LITERAL

A variable, <var>, can be defined as character by following ways:

```
<var> = char("<value");
```

or

```
<var> = '<value>';
```


Examples:

```
c = char("a");
c = 'a';
c = '5';
```


4.2.3 String

String: STRING_LITERAL

A variable, <var>, can be defined as String by following ways:

```
<var> = String(<value>);
```

or

```
<var>= "<Value>";
```


Examples:

```
str = String("This is a String");
str = "This is a String";
```

Attributes for String type are given in the table below:

Call Signature	Description Return Type	
length	Returns the length.	integer
index	Returns the index of a character.	integer

rindex	Returns the right index of a character.	integer
substring	Returns a sub string.	string
toLowerCase	Returns the same string with all lower-case characters.	string
toUpperCase	Returns the same string with all upper-case characters.	string
startsWith	Tests if this string starts with the specified prefix.	boolean
endsWith	Tests if this string ends with the specified suffix.	boolean
split	Returns a list with elements obtained from splitting the string.	arrayList

4.2.4 Integer

The integer data type is a 32-bit signed two's complement integer, which has a minimum value of -2^{31} and a maximum value of $2^{31}-1$.
integer : DECIMAL_LITERAL
A variable, <var>, can be defined as long by following ways:

```
<var> = integer(<value>);
```

or

```
<var> = <integer value>;
```


Examples:

$i=$ integer (3.2); $->i=3$.
$i=10$;

4.2.5 Real

The real data type is a double-precision 64-bit IEEE 754 floating point.
real : FLOATING_POINT_LITERAL
A variable, <var>, can be defined as double by following ways:

```
<var> = real(<value>);
```

or

```
<var> = <real value>;
```


Examples:

```
r = real(2); -> r = 2.0.
r = 3.14;
r = 9.11E-31;
```


4.2.6 Imaginary

A variable, <var>, can be defined as imaginary by following ways:

```
<var> = imaginary(<value>);
```

or

```
<var> = <value>i;
```

<value> can be either integer or double;

Examples:

imag $=$ imaginary (2.5); $->$ imag $=2.5 i$
or
imag $=$ imaginary (2); $->$ imag $=2.0 i$
or
imag $=2.5 i ;$
or
imag = 2i; -> imag = 2.0i

4.2.7 Complex

A variable, <var>, can be defined as complex by following ways:

```
<var> = complex(<value>,<value>)
```

or

```
<var> = <value> \pm <value>i;
```

<value> can be either integer or double;

Examples:

```
    com = complex(2.5, -3); -> com = 2.5 - 3.0i
```

or

$$
\text { com }=2.5+3 i ;->c o m=2.5+3.0 i
$$

Attributes for Complex type are given in the table below:

Call Signature	Description Type	
real	Returns the real part.	real
imaginary	Returns the imaginary part.	real
magnitude	Returns the magnitude.	real
angle	Returns the phase angle.	real
conjugate	Returns the complex conjugate.	complex

4.2.8 Quaternion

A variable, <var>, can be defined as quaternion by following ways:

```
<var> = quaternion(<value>,< value >,< value >,< value >)
```

or

```
<var> = <value> }\pm\mathrm{ <value>i }\pm\mathrm{ <value>j }\pm<value>k
```

or

```
<var> = <value>i }\pm\mathrm{ <value>j }\pm <value>k
```

or

```
<var> = <value> \pm <value>i }\pm\mathrm{ <value>j;
```

or

```
<var> = <value> \pm <value>i }\pm\mathrm{ <value>k;
```

or

```
<var>= <value> \pm <value>j }\pm\mathrm{ <value>k;
```

or

```
<var> = <value> \pm <value>j;
```

Or

```
<var> = <value> \pm <value>k;
```

or

```
<var> = <value>i \pm <value>j;
```

Or

```
<var> = <value>i }\pm\mathrm{ <value>k;
```

or

```
<var> = <value>j }\pm\mathrm{ <value>k;
```

<value> can be either integer or double;

Examples:

```
quat = quaternion (2.5, -3, 4, -1.2); -> quat = 2.5 - 3.0i + 4j -1.2k.
```

or

```
quat = 2.5 - 3.0i + 4j -1.2k;
```

Some components may be skipped as shown below:

```
quat = -3.0i + 4j -1.2k; -> quat = 0.0 - 3.0i + 4.0j -1.2k.
quat = 2.5 - 3.0i + 4j; -> quat = 2.5 - 3.0i + 4.0j + 0.0k.
quat = 2.5 - 3.0i + -1.2k; -> quat = 2.5 - 3.0i + 0.0j -1.2k.
quat = 2.5 + 4j -1.2k; -> quat = 2.5 + 0.0i + 4.0j -1.2k.
quat = 2.5 + 4j; -> quat = 2.5 + 0.0i + 4.0j + 0.0k.
quat = 2.5 -1.2k; -> quat = 2.5 + 0.0i + 0.0j -1.2k.
quat = -3.0i + 4j; -> quat = 0.0 - 3.0i + 4.0j + 0.0k.
quat = -3.0i -1.2k; -> quat = 0.0 - 3.0i + 0.0j -1.2k.
quat = 4j -1.2k; -> quat = 0.0 + 0.0i + 4.0j -1.2k.
```

Attributes for Quaternion type are given in the table below:

Call Signature	Description Typeturn	
scalar	Returns the scalar part.	real
vector	Returns the vector part.	realvector
\mathbf{i}	Returns the i component of the vector part.	real
\mathbf{j}	Returns the \mathbf{j} component of the vector part.	real
\mathbf{k}	Returns the \mathbf{k} component of the vector part.	real
norm	Returns the norm.	real
unit	Returns the unit quaternion.	quaternion
conjugate	Returns the complex conjugate.	quaternion
reciprocal	Returns the reciprocal quaternion.	quaternion

4.2.9 Polynomial

The type Polynomial represents a mathematical polynomial. A variable, <var>, can be defined as polynomial by following ways:

```
<var> = polynomial(<coefficient>,<coefficient>, ... ,<coefficient>)
```

or

```
<var> = #<coefficient>, <coefficient>, ... , <coefficient>#;
```

<coefficient> can be either long or double, but the coefficients of the polynomial are always double;

Examples:

A polynomial can be created using a constructor:

```
poly = polynomial(1.5, 2,1e-3)
```

will result in: poly $=1.5 x^{2}+2 x+0.003$
or using the polynomial operator, "\#".

```
poly = #1.5, 2, 1e-3#;
```

will result in: \quad poly $=1.5 x^{2}+2 x+0.003$
or

```
poly = #1.5, 2, 1e-3, 4.5#;
```

will result in: \quad poly $=1.5 x^{3}+2 x^{2}+0.003 x+4.5$

Attributes for Polynomial type are given in the table below:

Call Signature	Description	Return Type
degree	Returns the degree of the polynomial.	integer
eval (integer \mathbf{x})	Returns the value of the polynomial for the parameter \mathbf{x}.	real
eval (real \mathbf{x})	Returns the value of the polynomial for the parameter \mathbf{x}.	real
eval (imaginary \mathbf{x})	Returns the value of the polynomial for the parameter \mathbf{x}.	complex
coefficients	Returns all the coefficients.	realVector
coefficient (integer n)	Returns coefficient corresponding to the power n.	real
coefficient(real n)	Returns coefficient corresponding to the power n.	real

4.2.10 Rational

The type Rational represents a ratio of two polynomials. A variable, <var>, can be defined as rational using a constructor:

```
<var> = rational(<polynomial_value>, <polynomial_value>)
```

or using division operator, " $"$ ".

```
<var> = <polynomial_value>/<polynomial_value>;
```


Examples:

```
poly1 = #1, 2, 3#;
poly2 = #4, 5, 6, 7#;
rat = polynomial(poly1,poly2);
```

will result in: $r a t=\frac{x^{2}+2 x+3}{4 x^{3}+5 x^{2}+6 x+7}$
The same result can be achieved by

```
rat = poly1/poly2;
```

Attributes for Rational type are given in the table below:

Call Signature	Description	Return Type
num	Returns the numerator.	polynomial
den	Returns the denominator.	polynomial
eval (integer \mathbf{x})	Returns the value of the polynomial for the parameter \mathbf{x}.	real
eval (real \mathbf{x})	Returns the value of the polynomial for the parameter \mathbf{x}.	real
eval (imaginary \mathbf{x})	Returns the value of the polynomial for the parameter \mathbf{x}.	complex

4.2.11 Range

The type range represents a sequence of equally spaced integers. A variable, <var>, can be defined as a range by following ways:

```
<var> = range(<first>, <last>, <increment>);
```

or

```
<var> = range(<first>, <last>);
```

In this method, the increment is assumed to be 1.
or

```
<var> = range(<last>)
```

In this method, the first value of the sequence is assumed to be 0 , and the increment is assumed to be 1 .

Example 1:

$$
\text { rng }=\text { range }(10,30,5) ;
$$

The statement above will produce the following sequence:
$10,15,20,25,30$

Example 2:

rng = range (10, 15);
The statement above will produce the following sequence:
$10,11,12,13,14,15$

Example 3:

rng $=$ range (5);
The statement above will produce the following sequence:
$0,1,2,3,4,5$

Attributes for Quaternion type are given in the table below:

Call Signature	Rescription Type	
length	Returns the length of the range.	integer
first	Returns the first element of the range.	integer
last	Returns the last element of the range.	integer
incr	Returns the increment value.	integer

4.2.12 Vector

The type Vector represents a mathematical vector, as defined in Linear Algebra. There are five subtypes of Vector: Real Vector, Complex Vector, Quaternion Vector, Polynomial Vector, and Rational Vector.

Common attributes for all Vector type are given in the table below:

Call Signature	Description Type	
length	Returns the length of the vector.	integer
transpose	Returns the transpose of the vector.	matrix

4.2.12.1 Real Vector

The elements of a Real Vector are of type double.
A variable, <var>, can be defined as a vector by two different methods:

First method:

<var> = [<element>, <element>, ... , <element>];

Example:

```
    vec = [1.5, 2, 1e-3];
```

<element> can be either integer or real, but the vector elements are always real.

Second Method:

<var> = realVector (<element>,<element>, ... ,<element>)

Example:

```
    vec = realVector(1.5, 2, ... ,1e-3)
```

Both methods will produce the following vector:

$$
\text { vec }=\left[\begin{array}{c}
1.5 \\
2.0 \\
0.003
\end{array}\right]
$$

Attributes for Vector type are given in the table below:

Call Signature	Description	Return Type
norm	Returns the norm of the vector.	real

4.2.12.2 Complex Vector

The elements of a Complex Vector are of type complex. A variable, <var>, can be defined as a complex vector by three different methods:

First Method:

<var> = [<element>, <element>, ... , <element>];

If at least one <element> is of type Complex or Imaginary and all other <element>s are of type Integer or Real, a Complex Vector will be produced using the parameters. Elements of type Real are converted to complex numbers with zero imaginary parts, and elements of type Imaginary are converted to complex numbers with zero real parts.

Example:

```
vec = [1.5 + 3i, 2 + 4.5i, 1e-3 + 1e-2i];
```


Second method:

```
    <var> = complexVector(<element>, <element>, ... , <element>)
```

If at least one parameter is of type Complex or Imaginary and all other parameters are of type Integer or Real, a Complex Vector will be produced using the parameters. The <element>s are of type complex. Elements of type Real are converted to complex numbers with zero imaginary parts and elements of type Imaginary are converted to complex numbers with zero real parts.

```
<var> = complexVector(<element1>,<element2>)
```

If <element1>, <element2> are vector of real values and have equal lengths, a Complex Vector will be produced whose from the <element1> and <element2>. <element1> will provide the real components and the <element2> will provide the imaginary components.

Attributes for Complex Vector type are given in the table below:

Call Signature	Description	Return Type
real	Returns the real part.	realVector
imaginary	Returns the imaginary part.	realVector
magnitude	Returns the magnitude.	realVector
angle	Returns the phase angle.	realVector
conjugate	Returns the complex conjugate.	complexVector

4.2.12.3 Quaternion Vector

The elements of a Quaternion Vector are of type quaternion. A variable, <var>, can be defined as a quaternion vector by three different methods:

First Method:

```
<var>= [<element>, <element>, ... , <element>];
```

If at least one <element> is of type Quaternion and rests of the <element>s are of type Long, Double, Imaginary, or Complex, a Quaternion Vector will be produced using the parameters. Elements of type other than Quaternion are converted to Quaternion.

Example:

```
    vec = [1.5 + 3i + 2j + 1k, 2 + 4.5i + 1e-3j + 1e-2k];
```


Second method:

```
<var> = quaternion_realVector(<element>, <element>, ... , <element>)
```

If at least one parameter is of type Quaternion and rests of the parameters are of type Long, Double, Imaginary, or Complex, a Quaternion Vector will be produced using the parameters. Elements of type other than Quaternion are converted to Quaternion.

Third method:

```
<var> = quaternionVector(<element1>,<element2>,<element3>,<element4>)
```

If <element1>, <element2>, <element3>, <element4> are vectors of real values and equal lengths, a Quaternion Vector will be produced from the <element1>, <element2>, <element3>, and <element4>. <element1> will provide the scalar components and the <element2>, <element3>, and <element4> will provide the vector components.

Attributes for Quaternion Vector type are given in the table below:

Call Signature	Description	Return Type
scalar	Returns the scalar part.	realVector
\mathbf{i}	Returns the \mathbf{i} component of the vector part.	realVector
\mathbf{j}	Returns the \mathbf{j} component of the vector part.	realVector
\mathbf{k}	Returns the \mathbf{k} component of the vector part.	realVector
norm	Returns the norm.	realVector
unit	Returns the unit quaternion.	quaternionVector
conjugate	Returns the complex conjugate.	quaternionMatrix
reciprocal	Returns the reciprocal quaternion.	quaternionVector

4.2.12.4 Polynomial Vector

The elements of a Polynomial Vector are of type polynomial. A variable, <var>, can be defined as a polynomial vector by two different methods:

First Method:

```
<var>= [<element>, <element>, ... , <element>];
```

If all the <element>s are of type polynomial, a polynomial vector will be created.

Example:

```
vec = [#1,2,3# , #4,5,6#];
```

Second method:

```
<var> = polynomialVector(<element>, <element>, ... , <element>)
```

If all the parameters are of type Polynomial, a Polynomial Vector will be produced using the parameters.

Attributes for Polynomial Vector type are given in the table below:

Call Signature	Description	Return Type
degree	Returns the degree of the polynomial.	realVector
eval (integer \mathbf{x})	Returns the value of the polynomial for the parameter \mathbf{x}.	realVector
eval (real \mathbf{x})	Returns the value of the polynomial for the parameter \mathbf{x}.	realVector
eval (imaginary \mathbf{x})	Returns the value of the polynomial for the parameter \mathbf{x}.	complexVector

4.2.12.5 Rational Vector

The elements of a Rational Vector are of type rational. A variable, var, can be defined as a polynomial vector by two different methods:

First Method:

```
<var> = [<element>, <element>, ... , <element>];
```

The <element>s are of type rational.

Example:

```
vec = [#1,2,3# / #4,5,6#, #11,12,13# / #14,15,16#];
```


Second method:

```
<var> = rationalVector(<element>, <element>, ... , <element>)
```

If all the parameters are of type Rational, a Rational Vector will be produced using the parameters.

Attributes for Rational Vector type are given in the table below:

Call Signature	Description	Return Type
num	Returns the numerator.	polynomialVector

den	Returns the denominator.	polynomialVector
eval (integer \mathbf{x})	Returns the value of the polynomial for the parameter $\mathbf{x .}$	realVector
eval (real \mathbf{x})	Returns the value of the polynomial for the parameter $\mathbf{x .}$	realVector
eval (imaginary \mathbf{x})	Returns the value of the polynomial for the parameter \mathbf{x}.	complexVector

4.2.13 Matrix

The type Matrix represents a mathematical matrix, as defined in Linear Algebra. There are five subtypes of Matrix: Real Matrix, Complex Matrix, Quaternion Matrix, Polynomial Matrix, and Rational Matrix.

Accessing matrix elements:

The element at row i and column j of the matrix can be accessed by following way:

```
mat[i,j];
```

Contiguous elements from row r_{1} to r_{2} and from column c_{1} to c_{2} can be accessed by following way:

```
mat[r1:r2, c1:c2]
```

Common attributes for all Matrix type are given in the table below:

Call Signature	Description Type	
rows	Returns the number of rows of the matrix.	integer
columns	Returns the number of columns of the matrix.	integer
transpose	Returns the transpose of the vector.	Matrix
isSquare	Returns TRUE if the matrix is square, and returns FALSE otherwise.	boolean
isSymmetric	Returns TRUE if the matrix is symmetric, and returns FALSE otherwise.	boolean

4.2.13.1 Real Matrix

The elements of a Real Matrix are of type Real. A variable, <var>, can be defined as Real Matrix by three different methods.

First method:

```
<var> = | <element>, <element>, ... , <element> |,
| <element>, <element>, ... , <element> |,
| <element>, <element>, ... , <element> |,
```(3)
<element>s can be of type either Integer or Real, but the matrix elements types are always Real.

\section*{Example:}

The matrix from the second method can be created by the following way:
\[
\begin{aligned}
\operatorname{mat}= & \mid 1.5, \\
& \mid 2.7, \\
& 4.3,51, \\
& \mid 1 e-3, \\
\hline .0 .0, & 9.02 \mid
\end{aligned}
\]

Will result in the following the matrix:
\[
\text { mat }=\left[\begin{array}{ccc}
1.5 & 4.7 & 7.3 \\
2.0 & 5.0 & 8.22 \\
0.003 & 6.0 & 9.0
\end{array}\right]
\]

\section*{Second Method:}
```

<var> = realMatrix(<numRow>, <numColumn>
<element>,<element>, ... ,<element>) (1)

```
<numRow> and <numColumn> are number or rows and the number columns in the matrix. The total number of elements (TNOE) equals to <numRow> times < numColumn>.

If there are no other parameters, all the elements in the matrix will be initialized to zeros. If a third parameter, <element>, of type Integer or Real is provided, all the elements in the matrix will be initialized to the value of the third parameter. If more than one <element> are provided, these <element>s will be used in an attempt to fill the matrix. If the number of <element>s (NOE) is equal to TNOE, the matrix will be filled exactly. If NOE is less than TNOE, the rest of the elements will be set to zero. If the NOE is greater than TNOE, the excess <element>s will be ignored.

Example:
```

mat = realMatrix(2, 3, 1, 2.0, 3.5, 4, 5, 6)

```

Will result in the following matrix:
\[
\text { mat }=\left[\begin{array}{lll}
1.0 & 2.0 & 3.5 \\
4.0 & 5.0 & 6.0
\end{array}\right]
\]

\section*{Third Method:}
```

<var>= realMatrix(<realVector value>,< realVector value>
, ... ,< realVector _value>) (2)

```
<realVector_value>s are of type Vector. All <realVector_value>s must have the same length. Vectors are represented as columns of the matrix. Any number of <realVector_value>s can be provided.

\section*{Example:}
```

Vec1 = realVector (1.5, 2, ... ,1e-3)
Vec2 = [4.7, 5, 6];
Vec3 = [7.3, 8.22, 9.0];
mat = realMatrix(vec1, vec2, vec3)

```

Will result in the following the matrix:
\[
\text { mat }=\left[\begin{array}{ccc}
1.5 & 4.7 & 7.3 \\
2.0 & 5.0 & 8.22 \\
0.003 & 6.0 & 9.0
\end{array}\right]
\]

\section*{Accessing matrix elements:}

\section*{Examples:}
```

$\operatorname{mat}[2,3]->8.22$
$\operatorname{mat}[2: 3,2: 3] \rightarrow\left[\begin{array}{ll}5.0 & 8.22 \\ 6.0 & 9.22\end{array}\right]$

```

The number of rows of a matrix can be obtained as follows:
```

mat.numrows -> 3

```

Similarly, the number of columns of a matrix can be obtained as follows:
```

mat.numcolumns -> 3

```

For the matrix form the examples of methods 2 and 3 , the values would be 3 and 3 .

\subsection*{4.2.13.2 Complex Matrix}

The elements of a Complex Matrix are of type complex. A variable, <var>, can be defined as Complex Matrix by four different methods.

\section*{First method:}
```

<var> = | <element>, <element>, ... , <element> |,
| <element>, <element>, ... , <element> |,
| <element>, <element>, ... , <element> |

```
<element>s can be of type Integer, Real, Imaginary or Complex, but if at least one of the <element>s is of type Complex, all the matrix elements will be of type Complex.

\section*{Example:}

The matrix from the second method can be created by the following way:
\[
\begin{array}{rrr}
\text { mat }= & \mid 1.5+i, & 4.7+1.5 i, \\
\mid 2, & 7.3 \mid, \\
\mid 1 e-3 i, & 6+2 i, & 8.22+0.3 i \mid, \\
& 9 \mid ;
\end{array}
\]

Will result in the following the matrix:
\[
\text { mat }=\left[\begin{array}{ccc}
1.5+i & 4.7+1.5 i & 7.3 \\
2.0 & 5.0 i & 8.22+0.3 i \\
0.003 i & 6.0+2 i & 9.0
\end{array}\right]
\]

\section*{Second method:}
```

<var> = complexMatrix (<numRow>,<numColumn>
<element>,<element>, ... ,<element>) (1)

```
<numRow> and <numColumn> are number or rows and the number columns in the matrix. The total number of elements (TNOE) equals to <numRow> times < numColumn>.

If there are no other parameters, all the elements in the matrix will be initialized to complex numbers, whose real and imaginary parts are zeros. If a third parameter, <element>, of type

Integer, Real, Imaginary or Complex is provided; all the elements in the matrix will be initialized to the value of the third parameter. If more than one <element> are provided, these <element>s will be used in an attempt to fill the matrix. If the number of <element>s (NOE) is equal to TNOE, the matrix will be filled exactly. If NOE is less than TNOE, the rest of the elements will be set to complex numbers, whose real and imaginary parts are zeros. If the NOE is greater than TNOE, the excess <element>s will be ignored.

\section*{Example:}
```

mat = complexMatrix (2, 3, 1+2i, 2.0+4i, 0.5i, 4+i, 5+2.5i, 6)

```

Will result in the following matrix:
\[
\text { mat }=\left[\begin{array}{ccc}
1.0+2 i & 2.0+4 i & 0.5 i \\
4.0+i & 5.0+2.5 i & 6.0
\end{array}\right]
\]

\section*{Third Method:}
```

<var> = complexMatrix (<complexVector>,<complexVector>
, ... ,<complexVector>) (2)

```
<complexVector>s are of type Complex Vector. All <complexVector>s must have the same length. Vectors are represented as columns of the matrix. Any number of <complexVector>s can be provided.

\section*{Example:}
```

Vec1 = complexVector(1.5+i, 2, ... ,1e-3+0.1i)
Vec2 = [4.7+1.5i, 5i, 6+2i];
Vec3 = [7.3, 8.22+0.3i, 9i];
mat = complexMatrix (vec1, vec2, vec3)

```

Will result in the following the matrix:
\[
\text { mat }=\left[\begin{array}{ccc}
1.5+i & 4.7+1.5 i & 7.3 \\
2.0 & 5.0 i & 8.22+0.3 i \\
0.003 i & 6.0+2 i & 9.0 i
\end{array}\right]
\]

\section*{Fourth Method:}
<varR> = | <real_element>, < real_element>, ... , < real_element> |, | < real_element>, < real_element>, ... , < real_element> |,
```

    | < real_element>, < real_element>, ... , < real_element> |
    <varI> = | <real_element>, < real_element>, ... , < real_element> |,
| < real_element>, < real_element>, ... , < real_element> |,
| < real_element>, < real_element>, ... , < real_element> |
<var> = complexMatrix (<varR>, <varI>);

```

\section*{Example:}
```

matR = |1.5, 4.7, 7.3 |,
| 2, 0, 8.221,
| 0, 6, 9 l;
matI = | 1, 1.5, 01,
| 0, 5, 0.3|,
|1e-3, 2, 01;
mat = complexMatrix (matR, matI);

```

Will result in the following the matrix:
\[
\text { mat }=\left[\begin{array}{ccc}
1.5+i & 4.7+1.5 i & 7.3 \\
2.0 & 5.0 i & 8.22+0.3 i \\
0.003 i & 6.0+2 i & 9.0 i
\end{array}\right]
\]

Attributes for Complex type are given in the table below:
\begin{tabular}{|l|l|l|}
\hline Call Signature & \multicolumn{1}{|c|}{ Description } & Return Type \\
\hline real & Returns the real part. & realMatrix \\
\hline imaginary & Returns the imaginary part. & realMatrix \\
\hline magnitude & Returns the magnitude. & realMatrix \\
\hline angle & Returns the phase angle. & realMatrix \\
\hline conjugate & Returns the complex conjugate. & complexMatrix \\
\hline
\end{tabular}

\subsection*{4.2.13.3 Quaternion Matrix}

The elements of a Quaternion Matrix are of type quaternion. A variable, <var>, can be defined as Quaternion Matrix by four different methods.

\section*{First method:}
```

<var> = | <element>, <element>, ... , <element> |,
| <element>, <element>, ... , <element> |,
| <element>, <element>, ... , <element> |

```
<element>s can be of type Long, Double, Imaginary, Complex or Quaternion, but if at least one of the <element>s is of type Quaternion, all the matrix elements will be of type Quaternion.

\section*{Example:}

The matrix from the second method can be created by the following way:
```

mat = | | | | i i+2j+3.5k, 4.7+1.5i,

```

Will result in the following the matrix:
\[
\text { mat }=\left[\begin{array}{ccc}
1.5+i+2 j+3.5 k & 4.7+1.5 i & 7.3 \\
2.0 & 5.0 i & 8.22+0.3 i \\
0.003 i & 6.0+2 i & 9.0+0 i+0 j+k
\end{array}\right]
\]

\section*{Second method:}
<var> = quaternionMatrix (<numRow>, <numColumn>
<element>, <element>, ... ,<element>) (1)
<numRow> and <numColumn> are number or rows and the number columns in the matrix. The total number of elements (TNOE) equals to <numRow> times < numColumn>.

If there are no other parameters, all the elements in the matrix will be initialized to complex numbers, whose real and imaginary parts are zeros. If a third parameter, <element>, of type Integer, Real, Imaginary, Complex or Quaternion is provided; all the elements in the matrix will be initialized to the value of the third parameter. If more than one <element> are provided,
these <element>s will be used in an attempt to fill the matrix. If the number of <element>s (NOE) is equal to TNOE, the matrix will be filled exactly. If NOE is less than TNOE, the rest of the elements will be set to quaternions, whose scalar and vector parts are zeros. If the NOE is greater than TNOE, the excess <element>s will be ignored.

\section*{Example:}
```

mat = quaternionMatrix (2, 3, 1+2i+3j+4k, 2.0+4j, 0.5i, 4+3k, 5+2.5i, 6)

```

Will result in the following matrix:
\[
\text { mat }=\left[\begin{array}{ccc}
1.0+2 i+3 j+4 k & 2.0+0 i+4 j+0 k & 0.5 i \\
4.0+0 i+0 j+3 k & 5.0+2.5 i & 6.0
\end{array}\right]
\]

\section*{Third Method:}
```

<var> = quaternionMatrix(<quaternion_realVector>,<
quaternion_realVector>
, ... ,< quaTernion_realVector>)
<complexVector>s are of type vector defined previously. All <complexVector>s must have the same length. Vectors are represented as columns of the matrix. Any number of <complexVector>s can be provided.

## Example:

```
Vec1 = quaternion_realVector(1.5+i+2j+3.5k, 2, ... ,1e-3+0.1i)
Vec2 = [4.7+1.5i, 5i, 6+2i];
Vec3 = [7.3, 8.22+0.3i, 9+k];
mat = quaternionMatrix(vec1, vec2, vec3)
```

Will result in the following the matrix:

$$
\text { mat }=\left[\begin{array}{ccc}
1.5+i+2 j+3.5 k & 4.7+1.5 i & 7.3 \\
2.0 & 5.0 i & 8.22+0.3 i \\
0.003 i & 6.0+2 i & 9.0+0 i+0 j+k
\end{array}\right]
$$

## Fourth Method:

```
<varS> = | <real_element>, < real_element>, ... , < real_element> |,
 | < real_element>, < real_element>, ... , < real_element> |,
 | < real_element>, < real_element>, ... , < real_element> |
```

```
<varI> = | <real_element>, < real_element>, ... , < real_element> |,
| < real_element>, < real_element>, ... , < real_element> |,
| < real_element>, < real_element>, ... , < real_element> |
<varJ> = | <real_element>, < real_element>, ... , < real_element> |,
 | < rea\overline{l}_element>, < rea\overline{l}element>, ... , < rea\overline{l}}element> |
 | < real_element>, < real_element>, ... , < real_element> |
<varK> = | <real_element>, < real_element>, ... , < real_element> |,
 | < rea\overline{l}_element>, < rea\overline{l_element>, ... , < rea\overline{l}_element> |,}
 | < real_element>, < real_element>, ... , < real_element> |
<var> = quaternionMatrix(<varS>, <varI>, <varJ>, <varK>);
```


## Example:

```
matS \(=11.5,4.7,7.3\) |,
 \(12,0,8.221\),
 | 0 , 6,6 l;
matI \(=1 \quad 1,1.5, \quad 0 \mid\),
 I \(0,5,0.31\),
 |1e-3, 2, 0|;
matJ \(=12,0,01\),
 l 0, 0, 01,
 l 0, 0, 01;
matK \(=|3.5,0,0|\),
 l 0, 0, 01,
 I 0, 0, 1|;
```

```
mat = quaternionMatrix(matS, matI, matj, matK);
```

Will result in the following the matrix:

$$
\text { mat }=\left[\begin{array}{ccc}
1.5+i+2 j+3.5 k & 4.7+1.5 i & 7.3 \\
2.0 & 5.0 i & 8.22+0.3 i \\
0.003 i & 6.0+2 i & 9.0+0 i+0 j+k
\end{array}\right]
$$

Attributes for Quaternion Matrix type are given in the table below:

Call Signature	Description	Return Type
scalar	Returns the scalar part.	realMatrix
$\mathbf{i}$	Returns the i component of the vector part.	realMatrix
$\mathbf{j}$	Returns the $\mathbf{j}$ component of the vector part.	realMatrix
$\mathbf{k}$	Returns the k component of the vector part.	realMatrix
norm	Returns the norm.	realMatrix
unit	Returns the unit quaternion.	quaternionMatrix
conjugate	Returns the complex conjugate.	quaternionMatrix
reciprocal	Returns the reciprocal quaternion.	quaternionMatrix

### 4.2.13.4 Polynomial Matrix

The elements of a Polynomial Matrix are of type polynomial. A variable, <var>, can be defined as Polynomial Matrix by three different methods.

## First method:

```
<var> = | <element>, <element>, ... , <element> |,
| <element>, <element>, ... , <element> |,
| <element>, <element>, ... , <element> |
```

If all the <element>s are of type polynomial, a polynomial matrix will be created.

## Example:

$$
\text { mat }=\begin{aligned}
& \text { \#1,2\#, } \# 3,4 \# \mid, \\
& |\# 1,2,3 \#, \# 5,6,7 \#|
\end{aligned}
$$

Will result in the following the matrix:

$$
\text { mat }=\left[\begin{array}{cc}
x+2 & 3 x+4 \\
x^{2}+2 x+3 & 5 x^{2}+6 x+7
\end{array}\right]
$$

## Second Method:

```
<var> = polynomialMatrix(<numRow>,<numColumn>
<element>,<element>, ... ,<element>) (1)
```

<numRow> and <numColumn> are number or rows and the number columns in the matrix. The total number of elements (TNOE) equals to <numRow> times < numColumn>.

If there are no other parameters, all the elements in the matrix will be initialized to polynomials with a single coefficient of zero value. If a third parameter, <element>, of type Polynomial is provided, all the elements in the matrix will be initialized to the value of the third parameter. If more than one <element> are provided, these <element>s will be used in an attempt to fill the matrix. If the number of <element>s (NOE) is equal to TNOE, the matrix will be filled exactly. If NOE is less than TNOE, the rest of the elements will be set to polynomials with a single coefficient of zero value. If the NOE is greater than TNOE, the excess <element>s will be ignored.

## Example:

```
mat = polynomialMatrix(2, 3, #1#, #1,2,3#, #1,2,3,4#, #1,2,3,4,5#,
#1,2,3,4,5,6#, #1,2,3,4,5,6,7#)
```

Will result in the following matrix:

$$
\text { mat }=\left[\begin{array}{ccc}
1 & x+2 & x^{2}+2 x+3 \\
x^{3}+2 x^{2}+3 x+4 & x^{4}+2 x^{3}+3 x^{2}+4 x+5 & x^{5}+2 x^{4}+3 x^{3}+4 x^{2}+5 x+6
\end{array}\right]
$$

## Third Method:

```
<var> = polynomialMatrix
(<polynomial_realVector>,<polynomial_realVector>
, ... ,<polynomial_realVector>) (2)
```

< polynomial_realVector>s are of type Polynomial Vector. All <polynomial_realVector>s must have the same length. Vectors are represented as columns of the matrix. Any number of <polynomial_realVector>s can be provided.

## Example:

```
Vec1 = realVector(#1,2#, #1,2,3#)
Vec2 = [#1,2,3#, #1,2,3,4#];
mat = polynomialMatrix(vec1, vec2)
```

Will result in the following the matrix:

$$
\text { mat }=\left[\begin{array}{cc}
x+2 & x^{2}+2 x+3 \\
x^{2}+2 x+3 & x^{3}+2 x^{2}+3 x+4
\end{array}\right]
$$

Attributes for Polynomial Matrix type are given in the table below:

Call Signature	Description	Return Type
degree	Returns the degree of the polynomial.	realMatrix
eval (integer $\mathbf{x}$ )	Returns the value of the polynomial for the parameter $\mathbf{x}$.	realMatrix
eval (real $\mathbf{x}$ )	Returns the value of the polynomial for the parameter $\mathbf{x}$.	realMatrix
eval (imaginary $\mathbf{x}$ )	Returns the value of the polynomial for the parameter $\mathbf{x}$.	complexMatrix

### 4.2.13.5 Rational Matrix

The elements of a Rational Matrix are of type rational. A variable, <var>, can be defined as Rational Matrix by four different methods.

## First method:



If all the <element>s are of type Rational, a rational matrix will be created.

## Example:

The matrix from the second method can be created by the following way:

```
mat = |#1,2#/#1,2,3#, ##3,4#/#5,6,7#|,
 |#11,12#/#11,21,13#, #13,14#/#15,16,17#|
```

Will result in the following the matrix:

$$
\text { mat }=\left[\begin{array}{cc}
\frac{x+2}{x^{2}+2 x+3} & \frac{3 x+4}{5 x^{2}+6 x+7} \\
\frac{11 x+12}{11 x^{2}+12 x+3} & \frac{13 x+14}{15 x^{2}+16 x+17}
\end{array}\right]
$$

## Second Method:

```
<var> = rational_matrix(<numRow>,<numColumn>
<element>,<element>, ... ,<element>) (1)
```

<numRow> and <numColumn> are number or rows and the number columns in the matrix. The total number of elements (TNOE) equals to <numRow> times < numColumn>.

If there are no other parameters, all the elements in the matrix will be initialized rationals with the numerators and the denominators consist of polynomial with a single coefficient of zero value. If a third parameter, <element>, of type Rational is provided, all the elements in the matrix will be initialized to the value of the third parameter. If more than one <element> are provided, these <element>s will be used in an attempt to fill the matrix. If the number of <element>s (NOE) is equal to TNOE, the matrix will be filled exactly. If NOE is less than TNOE, the rest of the elements will be set to rationals with the numerators and the denominators consist of polynomial with a single coefficient of zero value. If the NOE is greater than TNOE, the excess <element>s will be ignored.

## Example:

```
mat = rational_matrix(2, 2, #1#/#1,2,3#, #1,2,3#/#1,2,3,4#,
#11#/#11,12,13#, #11,12,13#/#11,12,13,14#,)
```

Will result in the following matrix:

$$
m a t=\left[\begin{array}{cc}
\frac{1}{x+2} & \frac{x+2}{x^{2}+2 x+3} \\
\frac{11}{11 x+12} & \frac{11 x+12}{11 x^{2}+12 x+13}
\end{array}\right]
$$

Third Method:

```
<var> = rational_matrix (<rational_realVector>,<rational_realVector>
, ... ,<rational_realVector>) (2)
```

<rational_realVector>s are of type Polynomial Vector. All <polynomial_realVector>s must have the same length. Vectors are represented as columns of the matrix. Any number of <rational_realVector>s can be provided.

## Example:

```
Vec1 = rational_realVector(#1#/#1,2#, #11#/#11,12#)
Vec2 = [#1,2#/#1,2,3#, #11,12#/#11,12,13#];
mat = rational_matrix(vec1, vec2)
```

Will result in the following the matrix:

$$
\text { mat }=\left[\begin{array}{cc}
\frac{1}{x+2} & \frac{x+2}{x^{2}+2 x+3} \\
\frac{11}{11 x+12} & \frac{11 x+12}{11 x^{2}+12 x+13}
\end{array}\right]
$$

## Fourth Method:

```
<var> = rational_matrix
(<numerator_polynomialMatrix>,<denominarot_polynomialMatrix>)
```

All the elements in the <numerator_polynomialmatrix> and <denominarot_polynomialMatrix must be of type Polynomial.

## Example:

```
num = | #1#, #1,2#|,
 |#11#, #11,12#|;
den = | #1,2#, #1,1,3#|,
 |#11,12#, #11,12,13#|;
mat = rational_matrix(num,den)
```

Will result in the following the matrix:

$$
\text { mat }=\left[\begin{array}{cc}
\frac{1}{x+2} & \frac{x+2}{x^{2}+2 x+3} \\
\frac{11}{11 x+12} & \frac{11 x+12}{11 x^{2}+12 x+13}
\end{array}\right]
$$

Attributes for Rational Matrix type are given in the table below:

Call Signature	Description	Return Type
num	Returns the numerator.	polynomialMatrix
den	Returns the denominator.	polynomialMatrix
eval (integer $\mathbf{x}$ )	Returns the value of the polynomial for the   parameter $\mathbf{x}$.	realMatrix
eval (real $\mathbf{x}$ )	Returns the value of the polynomial for the   parameter $\mathbf{x}$.	realMatrix
eval (imaginary $\mathbf{x}$ )	Returns the value of the polynomial for the   parameter $\mathbf{x}$.	complexMatrix

### 4.2.14 Array

A variable, <var>, can be defined as an array by following ways:

```
<var> = {<element>, < element >, ..., < element >};
```

<element> can be of any type, and several types can be mixed. Elements of an array can be accessed by specifying indices of the elements in an index operator ([]). The indices start at 1. Consecutive elements can be accessed by using a range operator (:) with the fist and the last indices of interest.

```
a[<index>] -> element value
a[<index_start>:<index_end>]-> element values.
```

Values of specific elements can be assigned by using indices and range operator in the similar manner as in accessing element values.

```
a[<index>] = element value
a[<index_start>:<index_end>] = element values.
```


## Examples:

Array definitions:

```
a = {1, 2.5, 3.0, true, 'c', "abc",...};
```

Accessing element values

```
a[1] -> 1
a[4] -> true.
a[1:3] -> 1, 2.5, 3.0
```

Assigning element values:

$$
a[2]=2.5 ;
$$

### 4.2.15 Table

Tables are two dimensional arrays.

## Examples:

$$
\text { tbl }=\left\{\left\{{ }^{\prime} a^{\prime}, ~ " a b c "\right\},\{2,3.5\}\right\} ;
$$

### 4.3 Statements

### 4.3.1 Expression

Logical expressions can be created by combining any of the logical operators.

## Example:

$$
1=(a>b| | c<d) \& \&(e!=0 \& \& f==1)
$$

Algebraic expressions can be created by combining any of mathematical operators or functions. A list of available functions will be presented later in the document.

## Example:

```
x = (a*b) + c*d^2 - e/f + abs(y);
```

The mathematical operators can operate on multiple data types. The table below provides a list of the valid operators, their descriptions, and the valid left and right operands types for each operator.

Operator	Operation	Left Operand Data Types	Right Operand Data Types
"+"	Plus	Integer, real, imaginary, complex, quaternion, polynomial, rational, real vector, real matrix	Integer, real, imaginary, complex, quaternion, polynomial, rational, real vector, real matrix
"-"	Minus	Integer, real, imaginary, complex, quaternion, polynomial, rational, real vector, real matrix	Integer, real, imaginary, complex, quaternion, polynomial, rational, real vector, real matrix
"*"	Multiply	Integer, real, imaginary, complex, quaternion, polynomial, rational, real vector, real matrix	Integer, real, imaginary, complex, quaternion, polynomial, rational, real vector, real matrix
"/"	Divide	Integer, real, imaginary, complex, quaternion, polynomial, rational,	Integer, real


		real vector, real matrix complex,   quaternion, polynomial	
$" \wedge "$	Exponent	Integer, real, imaginary, complex,   quaternion, polynomial, rational,   real vector, real matrix	Integer, real
$" \% "$	Remainder	Integer, real	Integer, real
$": "$	Range	Integer, real	Integer, real

The Range operator (:) can be used to access elements of an array, vector or a matrix. A range of numbers from $a$ to $b$ with increments of 1 is expressed as $a: b$. And a range of numbers from $a$ to $b$ with increments of $c$ is expressed as $a: c: b$.

## Examples:

```
1:10 -> 1, 2, 3, 4, 5 ,6, 7, 8, 9, 10
1:0.5:3.5 -> 1.0, 1.5, 2.0, 2.5, 3.0, 3.5
```


### 4.3.2 Control Flow Statements

### 4.3.2.1 If Statement

The syntax for creating if statement is:

```
if (<logical expression>)
{
 <Statements>
}
```

or

```
if (<logical expression>)
{
 <Statements>
}
else
{
 <Statements>
}
```

or

```
if (<logical expression>)
{
 <Statements>
}
else if (<logical expression>)
{
 <Statements>
```

```
}
else
{
 <Statements>
}
```


## Example:

```
a = 10;
b = 5;
if (a < b)
{
 print("a less than b")
}
else if (a > b)
{
 print("a greater than b")
}
else
{
 print("a equal to b")
}
```


### 4.3.2.2 Switch Statement

The syntax for creating switch statement is:

```
switch (variable_to_test)
{
 case value
 {
 <statements>
 break;
 }
 case value
 {
 <statements>
 break;
 }
 \vdots
 default
 {
 <statements>
 }
}
```

```
a = 2;
switch(a)
{
 case 1
 {
 b=2
 break
 }
 case 2
 {
 b=3
 break
 }
 case 3
 {
 b=4;
 break
 }
 default
 {
 b=5;
 }
}
```


### 4.3.2.3 For Loop

The syntax for creating for loop is:

```
for <index> in <list>
{
 <statements>
}
```

Examples:

```
week = {"Monday", "Tuesday", "Wednesday", "Thursday", "Friday",
"Saturday", "Sunday"};
for i in week
{
 print(i);
}
for i in -5.0:0.5:5.0
{
 print(i);
}
for i in 1:numOfPoints_x
{
 for j in 1:numOfPoints_y
 {
 R = sqrt(x[i]^2 + y[j]^2) + 1.0e-12;
 z[i,j] = sin(R)/(R*0.1) + 1.0;
 }
```


### 4.3.2.4 Loop

The loop statement can be used two different ways:

1. Infinite loop with a break statement inside the loop.
2. A loop with a termination condition.

The syntax for creating the infinite loop is:

```
loop
{
 <statements>
 break;
}
```

If the break statement not used the loop will run forever.
The syntax for creating loop is:

```
loop
{
 <statements>
}
while(<logical expression>)
```


## Example:

```
 i = 0;
 loop
 {
 print(i);
 I = i+1;
 if (i==10) break;
 }
```


## Example:

```
 i = 0;
 loop
 {
 print(i);
 I = i+1;
}
 while (i < 10);
```


### 4.3.2.5 While Loop

The syntax for creating while loop is:

```
while(<logical expression>)
{
 <statements>
}
```


## Example:

```
 i = 0;
 while (i < 10)
{
 print(i);
 i = i+1;
}
```


### 4.3.3 Try Catch Finally Statements

The syntax for try/catch/finally statement has three different forms. The simplest one consists of a single try and a catch block, as below:

```
try
{
 <Statements>
}
catch (Exception)
{
 <Statements>
}
```

Multiple catch blocks can be added to a single try block, as below:

```
try
{
 <Statements>
}
catch (<Exception>)
{
 <Statements>
}
 \vdots
 catch (<Exception>)
{
 <Statements>
}
```

An optional finally block can be added:

```
try
{
 <Statements>
}
catch (<Exception>)
{
 <Statements>
}
 :
catch (<Exception>)
{
 <Statements>
}
finally
{
 <Statements>
}
```


### 4.4 Functions

### 4.4.1 Declaration

The syntax for function declaration is:

```
function <identifier> (<type> <identifier>, ... ,
<type> <identifier>)
{
 statements
}
```

or

```
function <identifier> (<type> <identifier>, ... ,
<type> <identifier>)
{
 statements
 return_statement
}
```

or

```
function <identifier> (<type> <identifier>, ... ,
<type> <identifier> = <default_value>, ...)
{
 statements
}
```

or

```
function <identifier> (<type> <identifier>, ... ,
```

```
<type> <identifier> = <default_value>, ...)
{
 statements
 return_statement
}
```

The symbol (...) in the parameter list indicates optional repetition of the pattern. The parameter list can optionally have default values. If values for these parameters are not provided during a function call, the default values are used. Hyper supports function overloading. Two or more functions can have the same function name if they have different parameters. In this case, the function whose parameters match the calling parameters will be executed.

Local variables can be defined anywhere in the function. If a local variable is defined using a name that is also a name of a global variable, the local variable will shadow the global variable.

The return statement is optional. If return statement is not used, the function behaves a procedure. Hyper functions can return multiple values. To return multiple values, the return values need to be put in an array and return the array.

```
Examples:
 function display(real x)
{
 print(x);
}
function abc(integer x)
{
 return x*2;
}
function abc(integer x, integer y)
{
 return x*y;
}
function abc(real x, real y=2.0)
{
 return x/y;
}
function abc(real a, real b, real c)
{
 return {a*2, b*2, c*2};
}
```


### 4.4.2 Call

The syntax for function call is:

```
<function identifier>(<value>, <value>,...<value>);
```

or

```
<variable> = <function identifier>(<value>, <value>,..<value>);
```

or

```
(<variable>, <variable>, ... ,<variable>)
= <function identifier>(<value>, <value>,...<value>);
```


## Examples:

```
t_int = abc(2);
print(t_integer);
t_int_int = abc(7,2);
print(t_int_int);
t_real = abc(4.0);
print (t_real);
t_no_default = abc(27.0,6.0);
prin\overline{t}(t_no_default);
t_default = abc(27.0);
print(t_default);
inv_m1 = inv(m1);
(eigvec_m1, eigval_m1) = eigen(m1);
```

The last example shows multiple return values.

### 4.5 Class

A class is declared in the following way:

```
class <identifier>
{
 class statements;
}
```

or

```
class <identifier>
```

```
(<inherited class identifier>, ... , <inherited class identifier>)
{
 class statements;
}
```


## Examples:

```
class Point2D
{
 a = 10;
 this.b = 5;
 function Point2D()
 {
 }
 function Point2D(real x)
 {
 this.x = x;
 }
 function Point2D(real x, real y)
 {
 this.x = x;
 this.y = y;
 }
 function setA()
 {
 Point2D.a=15;
 }
```

        function setBA(real b1, real a1)
        f
            this.b = b1;
            Point2D.a = a1;
        \}
    \}
    The keyword this indicates that it is an object variable whose value can differ for each instance of the object. If a variable is declared without the this keyword, the variable will be a class variable, and its value will be the same in all instances of the class.

### 4.6 Import

### 4.6.1 Import Script

import <module_name>, ... , <module_name>,

### 4.6.2 Import Java

import_java_class(<java_class_path>, ... , < java_class_path >)

Examples:
lib_math = import_java_class("java.lang.Math")
lib_basic = impor̄t_java_class("library.Basic")

## 5 Class Libraries

Related Hyper library functions are grouped together and implemented using Java classes. One of the advantages using classes is that a primitive operation can be performed ones and multiple higher-level operations can be done subsequently without re invoking the primitive operation. For example, in linear algebra, to compute determinant, trace, inverse, or a solution, a LUP decomposition of a matrix need to be performed. Once a matrix is decomposed, determinant, trace, inverse, or a solution can be computed without re performing the decomposition. Another advantage of using class is that one can have multiple instances of the same class with different attributes. For example, we can have two different instances of the class Integrator or ODE Solver with two different step sizes or integration schemes. In some cases, a library consists of several classes. In these cases, there is a class that contains the constituent classes. The following outline illustrates the organizational structure of the libraries.

1. General Math
2. Linear Algebra
a. Utility
b. Linear Equations
c. Linear Least Square
d. Eigen
e. Singular Value
3. Zero Min Max
a. Root Finder
b. Optimization
4. Analysis
a. Differentiation
b. Integration
c. Ordinary Differential Equation
5. Estimation
a. Interpolation
b. Curve Fit
6. Stochastic
a. Statistics
i. Histogram
b. Probability
i. Uniform Distribution
ii. Triangular Distribution
iii. Normal Distribution
iv. Log Normal Distribution
v. Student Distribution
vi. Gamma Distribution
vii. Chi-Squared Distribution
viii. Exponential Distribution
ix. Laplace Distribution
x. Beta Distribution
xi. Fisher Snedecor Distribution
xii. Fisher Tippett Distribution
xiii. Weibull Distribution
xiv. Cauchy Distribution
xv. Histogrammed Distribution
xvi. All Distribution
7. Frequency Domain
a. FFT

The functions in the libraries are accessed by first importing the library then calling a function in the library using a dot notation. A library can be imported using a command of the following format:

```
<pointer> = import_java_class(<class path>")
```

A function in the library can be called using the following format:

```
<var> = <pointer>.<function_name>(<param>, <param>, ... <param>,)
```


## Example:

The determinant of a matrix can be computed the following way:

```
linEqn = import_java_class("library.linear_algebra.LinearEquations");
det = lib_la.dē̄ermiñant(mat);
```

where, linEqn is the pointer to the library, library. linear_algebra.LinearEquations is the class path, determinant is the name of the function, mat is a variable of type Real Matrix, and det is variable of type Real.

The library class paths and the function call signature, descriptions, and return types are documented in Appendices A - H. Descriptions of the libraries are presented in the sections below.

### 5.1 General Math

The General Math library contains functions that are normally found with any programming language such as Java. The functions in this library include absolutes value function,
trigonometric and hyperbolic functions etc. A complete list of the functions can be found in Appendix A. Some of these functions are overloaded for various types such as Integer, Real, Vector, and Matrix.

### 5.2 Linear Algebra

The Linear Algebra library composed of five classes: All, Linear Equations class, Linear Least Square class, Singular Value class, and Eigen class. Each of these classes is described below.

### 5.2.1 Utility

The Utility class contains methods for creating various types of vectors and matrices, accessing their attributes, and performing operations specific to vectors and matrices. All the functions contained in the Utility class are listed in the Appendix B.

### 5.2.2 Linear Equations

The Linear Equations class contains methods for solving linear equations of number equal to the number of unknowns. These equations are transformed in the following form:

$$
A x=b
$$

Where $\boldsymbol{A}$ is a square matrix of size $n x n$, represents n equations and n unknowns. $\boldsymbol{x}$ is a column vector of n unknowns, and $\boldsymbol{b}$ is a column vector of n inhomogeneous terms. $\boldsymbol{A}$ is called the coefficient matrix. Gaussian Elimination method is used to factorize the matrix $\boldsymbol{A}$ into three matrices: Lower Triangular (L), Upper Triangular (U), and Permutation (P). Hence, it's called LUP factorization. The matrix $\boldsymbol{A}$ can be LUP factorized by calling the function decompose. Once $\boldsymbol{A}$ is LUP factorized, various other operations such as computing determinant and inverse can be performed by calling functions such as determinant and inverse. All the functions contained in the Linear Equation class are listed in the Appendix B. The example below shows how to use this class.

## Example:

```
linEqn = import java class("library.linear algebra.LinearEquations")
```

The statement above imports the Linear Equation class and assigns to the pointer linEqn.

$$
\begin{aligned}
A= & \mid 3.0, & -0.1, & -0.2 \mid, \\
& \mid 0.1, & 7, & -0.3 \mid, \\
& \mid 0.3, & -0.2, & 10.0 \mid
\end{aligned}
$$

The statement above creates a $3 \times 3$ real matrix and assigns to the variable A .

```
b = [7.85, -19.3, 71.4];
```

The statement above creates a column vector and assigns to the variable $\mathbf{b}$.

```
linEqn.decomposeLUP(A);
```

The statement above performs LUP factorization of the matrix A.

```
(l, u ,p) = linEqn.lup()
```

The statement above assigns the computed $L, U$, and $P$ matrices to the variables $1, u$, and $p$.

Alternately,

```
l = linEqn.lower()
```

The statement above assigns the computed L matrix to the variable 1.

$$
\mathrm{u}=\text { linEqn. upper() }
$$

The statement above assigns the computed $U$ matrix to the variable $u$.

```
p = linEqn.permutation()
```

The statement above assigns the computed P matrix to the variable p .

```
det = linEqn.determinant();
```

The statement above computes the determinant of the matrix A and assigns it to the variable det.

```
tr = linEqn.trace();
```

The statement above computes the trace of the matrix A and assigns it to the variable tr.

```
inv = linEqn.inverse();
```

The statement above command above computes the inverse matrix of $A$ and assigns it to the variable inv.

```
solb = linEqn.solve(b);
```

The statement above computes the solution corresponding the inhomogeneous terms column $b$ and assigns it to the variable solb. Note that to compute solution for another inhomogeneous
terms column, say c, the coefficient matrix a does not need to be factorized again. The solution can be obtained simply using the following statement:

```
solc = linEqn.solve(c);
```

The solutions for both inhomogeneous terms columns can also be computed using a single call by combining $c$ and d into a matrix (bc) and passing this matrix as a parameter as in the following statements:

```
bc = realMatrix(b,c);
solbc = linEqn.solve(bc);
```

Note: For each of the function call above, the matrix A can be passed in as a parameter. In this case, A will be factorized for each function call.

### 5.2.3 Linear Least Squares

The Linear Least Squares class contains methods for solving linear equations, where the number of equations are not equal to the number of unknowns.

When the number of equations is greater than the number of unknowns, it is called an overdetermined system. Linear least square is the problem of approximately solving an overdetermined system of linear equations, where the best approximation is defined as that which minimizes the sum of squared differences between the data values and their corresponding modeled values. The approach is called "linear" least squares since the assumed function is linear in the parameters to be estimated.

Let $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ be an overdetermined linear equation. Where $\boldsymbol{A}$ is an $m x n$ matrix with $m>n$. If $\boldsymbol{b}$ is not in the column space of $\boldsymbol{A}$, the system is inconsistent and the equation cannot be solved for $\boldsymbol{x}$. In this case, a least-squares solution can be found by minimizing

$$
\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|=\left(\sum_{i=1}^{m}\left(\sum_{j=1}^{n} a_{i j} x_{j}-b_{i}\right)^{2}\right)^{1 / 2}
$$

$\boldsymbol{r}=\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}$ is called the residual or error. $\boldsymbol{x}$ with the smallest residual norm $\|\boldsymbol{r}\|$ is called the least-squares solution, which is equivalent to minimizing $\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|^{2}$. All the functions contained in the Linear Least Squares class are listed in the Appendix B.

## Example:

```
linLS = import_java_class("library.linear_algebra.LinearLeastSquare");
```

The statement above imports the Linear Equation class and assigns to the pointer linLs.

$$
\begin{aligned}
A= & |-2,1|, \\
& |-1,1|, \\
& 11,1 \mid, \\
& |2,1|, \\
& |1,2| ;
\end{aligned}
$$

The statement above creates a $5 \times 2$ real matrix and assigns to the variable A .

$$
\mathrm{b}=[0,1,2,2,3] ;
$$

The statement above creates a column vector and assigns to the variable $\mathbf{b}$.

```
linLS.decomposeQR(A);
```

The statement above performs QR factorization of the matrix A .

```
(Q, R) = linLS.qr()
```

The statement above assigns the computed Q , and R matrices to the variables Q , and R .

Alternately,

$$
Q=\text { linLS.getQ() }
$$

The statement above assigns the computed Q matrix to the variable Q .

$$
R=\operatorname{linLS} . \operatorname{getR}()
$$

The statement above assigns the computed R matrix to the variable R .

```
inv = linLS.inverseLS();
```

The statement above computes the least squares inverse matrix of A and assigns it to the variable inv.

```
x = lib_lls.solveLS (b);
```

The statement above computes the least squares solution corresponding the column $\mathbf{b}$ and assigns it to the variable $\mathbf{x}$.

### 5.2.4 Eigen

The Eigen class contains methods for computing eigenvalues and eigenvectors of a real or complex square matrix.

An eigenvector or characteristic vector of a square matrix is a vector that only changes its magnitude (length), but does not change its direction under the associated linear transformation. In other words-if $\boldsymbol{x}$ is a vector that is not zero, then it is an eigenvector of a square matrix $\boldsymbol{A}$ if $\boldsymbol{A} \boldsymbol{x}$ is a scalar multiple of $\boldsymbol{x}$. This condition could be written as the equation. An eigenvector is a nonzero vector that satisfies the equation

$$
A x=\lambda x
$$

Where $\boldsymbol{A}$ is an $n x n$ square matrix, scalar $\lambda$ is called the eigenvalue of $\boldsymbol{A}$ and $\boldsymbol{x}$ is called the eigenvector of A corresponding to $\lambda$. Eigenvalues and eigenvectors are also called proper roots and proper vectors("eigen" is German for the word "own" or "proper") or characteristic roots and characteristic vectors or latent roots and latent vectors. Geometrically, the equation $\boldsymbol{A x}=$ $\lambda \boldsymbol{x}$ implies that $\boldsymbol{A} \boldsymbol{x}$ and $\boldsymbol{x}$ are parallel. An eigenvector corresponding to a real, nonzero eigenvalue points in a direction that is stretched by the transformation and the eigenvalue is the factor by which it is stretched. If the eigenvalue is negative, the direction is reversed.
Eigenvalues and eigenvectors can be either real or complex. All the functions contained in the Eigen class are listed in the Appendix B.

## Example 1:

```
eig = import_java_class("library.linear_algebra.Eigen");
```

The statement above imports the Eigen class and assigns to the pointer eig.

$$
\begin{aligned}
\mathbf{A}= & \mid 3.0, & -0.1, & -0.2 \mid, \\
& \mid 0.1, & 7, & -0.3 \mid \\
& 10.3, & -0.2, & 10.0 \mid
\end{aligned}
$$

The statement above creates a real matrix and assigns to the variable A.

```
(eigval, eigvec) = lib_eigen.eigen(A);
```

The statement above computes eigenvalues and eigen vectors of a real matrix A and assigns to the variables eigval and eigvec respectively.

## Example 2:

$$
C=\left\lvert\, \begin{array}{lll}
1+3 i, & 2+1 i, & 3+2 i, \\
& 1+i+4 i, & 1+2 i, \\
& 2+1 i, & 4+3 i
\end{array}\right.
$$

```
| 2+3i, 1+5i, 3+1i, 5+2i|,
| 1+2i, 3+1i, 1+4i, 5+3i|;
```

The statement above creates a complex matrix and assigns to the variable c.

```
(eigval, eigvec) = lib_eigen.eigen(C);
```

The statement above computes eigenvalues and eigen vectors of a complex matrix C and assigns to the variables eigval and eigvec respectively.

### 5.2.5 Singular Value

The Singular Value class contains methods to perform singular value decomposition, compute pseudo inverse, and solve over determined and under determined system of linear equations.

Given a complex matrix $A$ having $m$ rows and $n$ columns, the matrix product $U \Sigma V^{*}$ (*) $^{*}$ denotes conjugate transpose) is a singular value decomposition for a given matrix $A$ if

- $\quad U$ and $V$, respectively, have orthonormal columns.
- $\quad \Sigma$ has nonnegative elements on its principal diagonal and zeros elsewhere.
- $A=U \Sigma V^{*}$.

Let $p$ and $q$ be the number of rows and columns of $\Sigma . U$ is $m \times p, p \leq m$, and $V$ is $n \times q$ with $q \leq n$.
There are three standard forms of the SVD. All have the ith diagonal value of $\Sigma$ denoted $\sigma_{i}$ and ordered as follows: $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{k}$, and $r$ is the index such that $\sigma_{r}>0$ and either $k=r$ or $\sigma_{r}+1$ $=0$.

1. $p=m$ and $q=n$. The matrix $\Sigma$ is $m \times n$ and has the same dimensions as $A$.
2. $p=q=\min \{m, n\}$. The matrix $\Sigma$ is square.
3. If $p=q=r$, the matrix $\Sigma$ is square. This form is called a reduced SVD and denoted by $\widehat{U} \hat{\Sigma} \widehat{V}^{*}$ The three standard forms are graphically illustrated



The second form of the singular value decomposition where $\mathrm{m} \geq \mathrm{n}$.


The second form of the singular value decomposition where $\mathrm{m}<\mathrm{n}$.


The first form of the singular value decomposition where $\mathrm{m} \geq \mathrm{n}$.


The third form of the singular value decomposition where $\mathrm{r} \leq \mathrm{n} \leq \mathrm{m}$.


The third form of the singular value decomposition where $\mathrm{r} \leq \mathrm{m}<\mathrm{n}$.

In the first standard form of the SVD, $U$ and $V$ are unitary. If $A$ is real, then $U$ and $V$ (in addition to $\Sigma$ ) can be chosen real in any of the forms of the SVD. The singular value decomposition $U \Sigma$ $V^{*}$ is not unique. If $U \Sigma V^{*}$ is a singular value decomposition, so is $(-U) \Sigma\left(-V^{*}\right)$. The singular values may be arranged in any order if the columns of singular vectors in $U$ and $V$ are reordered correspondingly. All the functions contained in the Singular Value class are listed in the Appendix B.

## Example:

```
lib_svd = import_java_class("library.linear_algebra.SingularValue");
```

The statement above imports the Singular Value class and assigns to the pointer lib_svd.

```
A1 = |22, 10, 2, 3, 7|,
 114, 7, 10, 0, 81,
 1-1, 13, -1, -11, 31,
 |-3, -2, 13, -2, 4|,
 | 9, 8, 1, -2, 4|,
 | 9, 1, -7, 5, -1|,
 | 2, -6, 6, 5, 1|,
 | 4, 5, 0, -2, 2|;
```

The statement above creates a real matrix and assigns to the variable A1.

```
(u,s,v) = lib_svd.svd(A1);
```

The statement above first factorizes the matrix A1 then assigns the computed $\mathrm{U}, \mathrm{S}$, and V matrices to the variables $\mathbf{u}, \mathbf{s}$, and $\mathbf{v}$.

```
A2 = lib_svd.pseudoinverse();
```

The statement above computes pseudo inverse of the matrix A1 from the already factorized matrix $u$ and assigns to the variable A2.

$$
\mathrm{b}=[-1,2,1,4,0,-3,1,0] \text {; }
$$

The statement above creates a real vector and assigns to the variable $\mathbf{b}$.

```
x = lib_svd.solveSVD (b) ;
```

The statement above computes the over determined solution of A1 corresponding to the column b and assigns it to the variable $\mathbf{x}$.

### 5.3 Zero Min Max

The Zero Min Max library contains methods to find zeros, maxima, and minima of a function. The Zero Max Min library contains three classes Root Finder, Optimizer, and All. The All class contains functions from the Root Finder and Optimizer classes.

### 5.3.1 Root Finder

The objective of a root finder is to compute solutions of the equation

$$
f(x)=0
$$

Two different methods are available to find roots of a function: Bisection method and Newton method. All the functions contained in the Root Finder class are listed in the Appendix C.

## Example:

```
rf = import_java_class("library.function_eval.RootFinder")
```

The statement above imports the Root class and assigns to the pointer rf.

```
function eqn(real x)
{
 y = x^3+x-1;
 return y;
}
```

The code fragment above sets up an equation whose root is to be determined.

```
result = rf.bisection("eqn(real)", 0.0, 1.0, 0.5e-7);
```

The statement above computes a root using the Bisection method with the bracketing values of 0.0 and 1.0 and a relative precision value of $0.5 \mathrm{e}-7$.

```
result = rf.newton("eqn(real)", 0.0, 0.5e-7);
```

The statement above computes a root using the Newton method with the initial guess of 0.0 and a relative precision value of $0.5 \mathrm{e}-7$.

Alternatively, the same result can be achieved by first setting the root finder method using one of the following statements:

```
setBisection();
```

or

```
setNewton();
```

Then setting up an equation using the following statement:

```
setFunction("eqn(real x)");
```

Then setting the relative precision using the following statement:

```
setPrecision(0.5e-7);
```

After this the multiple attempts to find a root can be made with different bracketing values (for Bisection method) or initial guesses (for Newton method) using one of the following statements:

```
bisection(0.0, 1.0);
```

or

```
newton(0.0);
```


### 5.3.2 Optimizer

An optimization problem can be represented in the following way:
Given: a function $f: A \rightarrow \mathbf{R}$ from some set $A$ to the real numbers
Sought: an element $x_{0}$ in $A$ such that $f\left(x_{0}\right) \leq f(x)$ for all $x$ in $A$ ("minimization") or such that $f\left(x_{0}\right) \geq f(x)$ for all $x$ in $A$ ("maximization").
optimization problems are usually stated in terms of minimization. Generally, unless both the objective function and the feasible region are convex in a minimization problem, there may be several local minima. A local minimum $\mathrm{x}^{*}$ is defined as a point for which there exists some $\delta>0$ so that for all x such that

$$
\left\|X-x^{*}\right\| \leq \delta
$$

the expression

$$
f\left(x^{*}\right) \leq f(x)
$$

holds; that is to say, on some region around $\mathrm{x}^{*}$ all of the function values are greater than or equal to the value at that point. Local maxima are defined similarly. Two different optimization strategies are available: Powell (also known as hill climbing) and Simplex.

All the functions contained in the Optimizer class are listed in the Appendix C.

## Example:

```
opt = import_java_class("library.function_eval.Optimizer")
```

The statement above imports the Optimizer class and assigns to the pointer opt.

```
{
 return 100*(x[2] - x[1]*x[1])*(x[2] - x[1]*x[1])
 +(1 - x[1])*(1 - x[1]);
}
```

The code fragment above defines the Rosenbrock's banana function whose optimum is to be determined.

```
result = opt.simplex("banana(realVector x)", [10, -10]);
```

The statement above computes the optimum of the Rosenbrock's banana function using the Simplex method. The first parameter is the signature of the function, and the second parameter is a vector whose elements are the initial values.

```
result = opt.powell("banana(realVector x)", [10, -10]);
```

The statement above computes the optimum of the same function using the Powell (Hill Climbing) method.

```
print(result);
```

The statement above prints the computed values.
Alternately, the same results can be obtained by first setting the optimizer using the following statement:

```
opt.setOptimizer("simplex");
```

or

```
opt.setOptimizer("powell");
```

Then setting an optimization strategy as:

```
opt.setStrategy("max");
```

or

```
opt.setStrategy("min");
```

Then setting the function as:

```
opt.setFunction("banana(realVector x) ");
```

Then setting the initial values as:

```
opt.setGuess([10, -10]);
```

Then computing the optimum values as:

```
result = opt.optimize();
```


### 5.4 Analysis

The Analysis library contains methods to compute definite integrals and derivatives of a function and solutions of ordinary differential equations. The Analysis library contains four classes:
Differentiator, Integrator, ODE Solver, and All. The All class contains functions from the Root Finder and Optimizer classes. All the functions contained in the Analysis library are listed in the Appendix D.

### 5.4.1 Differentiator

The definition of a derivative

$$
f^{\prime}(x)=\lim _{x \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Assuming the limit exists; i.e. the function is differentiable. The derivative of a function at $\boldsymbol{x}$ can be approximated by

$$
f^{\prime}(x) \approx \frac{f(x+h)-f(x)}{h}
$$

Where $h$ is a very small positive number.
The above formula is called Forward Difference method. The Differentiator class uses a more accurate formula called the Centered Difference method which is given as:

$$
f^{\prime}(x) \approx \frac{f(x+h)-f(x-h)}{2 h}
$$

In vector calculus, the Jacobian matrix is the matrix of all first-order partial derivatives of a vector-valued function. The Jacobian matrix J of $\boldsymbol{f}$ is an $m \times n$ matrix, usually defined and arranged as follows:

$$
\boldsymbol{J}=\frac{d \boldsymbol{f}}{d \boldsymbol{x}}=\left[\begin{array}{lll}
\frac{\partial \boldsymbol{f}}{\partial x_{1}} & \cdots & \frac{\partial \boldsymbol{f}}{\partial x_{n}}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}}
\end{array}\right]
$$

or, component-wise:

$$
\boldsymbol{J}_{i, j}=\frac{\partial f_{i}}{\partial x_{j}}
$$

The Differentiator class contains functions to compute derivative of a function at a given point, derivative of a vector with respect to another vector, derivative of a polynomial, and Jacobian matrix of a system of functions.

All the functions contained in the Differentiator class are listed in the Appendix D.

## Example 1:

```
dif = import_java_class("library.analysis.Differentiator");
```

The statement above imports the Differentiator class and assigns to the pointer dif.

```
function func(real x)
{
 return -0.1*x^4 -0.15*x^3 - 0.5**^2 - 0.25*x + 1.2;
}
```

The code fragment above defines the function to be differentiated.

```
result = dif.dydx("func(real x)",0.5, 1e-6);
```

The statement above computes the derivative of the function at 0.5 . The first parameter is the signature of the function, the second parameter is the value at which the derivative is computed, and the third parameter is the step size.

```
print(result);
```

The statement above prints the computed values.

## Example 2:

$$
x=-10: 0.25: 10 ;
$$

The statement above creates a vector whose elements range from - 10.0 to 10.0 in increments of 0.25 and assigns it to variable $\mathbf{x}$.

$$
y=x 1^{\wedge} 2 ;
$$

The statement above creates a vector whose elements are squares of the elements of the vector $\mathbf{x}$ and assigns it to variable $\mathbf{y}$.

```
dydx = dif.dydx (x, y);
```

The statement above differentiates vector $y$ with respect to vector $\mathbf{x}$ and assigns to variable dydx.

```
print(dydx);
```

The statement above print the variable dydx.

## Example 3:

```
poly = #1,2,3#;
```

The statement above creates the following polynomial:

$$
x^{2}+5 x+3
$$

```
dpoly = dif.derivative(poly);
```

The statement above computes the derivative of the polynomial.

```
print(dpoly);
```

The statement above print the following output:

```
dpoly = 2x + 5
```


## Example 4:

```
function func2(realVector x)
{
 y = zeros(3);
 y[1] = x[1]*x[1]*x[1] + x[2];
 y[2] = x[2]*10.0 + x[2]*x[1]*x[1];
 y[3] = x[1]*x[2];
 return y;
}
x = [2, 1];
```

The code fragment above defines a system of functions whose Jacobian matrix is to be computed at point $x=(2,1)$. The point $\mathbf{x}$ is specified using a vector.

```
jcob = dif.jacobian("func2(realVector x)", x);
```

The statement above computes the Jacobian matrix at point $\mathbf{x}$ and assigns it to a variable jcob.

```
print(jcob);
```

The statement above prints the computed Jacobian matrix.

### 5.4.2 Integration

Given a function f of a real variable $x$ and an interval $[a, b]$ of the real line, the definite integral

$$
\int_{a}^{b} f(x) d x
$$

is defined informally as the signed area of the region in the xy-plane that is bounded by the graph of $f$, the $x$-axis and the vertical lines $x=a$ and $x=b$. The area above the $x$-axis adds to the total and that below the x -axis subtracts from the total.

A double integral is defined as

$$
\iint_{\Omega} g(x, y) d x d y
$$

where $\Omega$ is a triangle with vertices $\left(x_{i}, y_{i}\right),\left(x_{j}, y_{j}\right)$, and $\left(x_{k}, y_{k}\right)$ and $g$ is real valued.
There are two types of integrators in the Integrator class: definite integrators and polynomial integrators. Several integration schemes are available for definite integrators: Simpson, Simpson Richardson, Romberg, Quadrature, and Tricube. Tricube is a double integrator, and all others are line integrators.

All the functions contained in the Integrator class are listed in the Appendix D.

## Example 1:

```
integ = import_java_class("library.analysis.Integrator");
```

The statement above imports the Integrator class and assigns to the pointer integ.

```
function integrand(real x)
{
 y = (10* exp (-x)*sin(2*PI*x))^2;
 return y;
}
```

The code fragment above defines the function to be integrated.

```
integ.setFunction("integrand(real)");
```

The statement above sets up the integrand.
result $=$ integ.simpson (0.0, 0.5);
The statement above performs integration from 0.0 to 0.5 using Simpson method and assigns the integrated value to the variable result.

```
result \(=\) integ.simpsonRichardson (0.0, 0.5);
```

The statement above performs integration from 0.0 to 0.5 using Simpson Richardson method and assigns the integrated value to the variable result.

```
result = integ.romberg (0.0, 0.5);
```

The statement above performs integration from 0.0 to 0.5 using Romberg method and assigns the integrated value to the variable result.

```
result = integ.quadrature (0.0, 0.5);
```

The statement above performs integration from 0.0 to 0.5 using Quadrature method and assigns the integrated value to the variable result.

Alternatively, the same results can be achieved by the following statements:

```
result = integ.simpson("integrand(real)", 0.0, 0.5)
result = integ.simpsonRichardson("integrand(real)", 0.0, 0.5)
result = integ.romberg("integrand(real)", 0.0, 0.5)
result = integ.quadrature("integrand(real)", 0.0, 0.5)
```


## Example 2:

Perform the following integration

$$
\int(x+5) d x
$$

Solution:

```
poly = #1, 5#;
```

The statement above creates the following polynomial:

$$
\text { poly }=x+5
$$

and assigns the polynomial to the variable poly.

```
ipoly = integ.integral (poly, 3.0);
```

The statement above integrates the polynomial, adds a constant value of 3.0 to the integration and assigns the integrated polynomial to the variable ipoy. The integrated polynomial is

$$
0.5 x^{2}+5 x+3
$$

## Example 3:

Evaluate the double integral

$$
\iint_{\Omega} \cos (x) \cos (y) d x d y
$$

over the triangle $\Omega$ in the $x$ - $y$ plane with vertices ( 0.0 ), ( $0.0, \pi / 2$ ), ( $\pi / 2, \pi / 2$ ).

## Solution:

```
function real_integrand(real x, real y)
{
 y = cos(x)* cos(y);
 return y;
}
```

The code fragment above defines the function to be double integrated.

```
integ.setFunction("integrand4(real, real)");
```

The statement above sets up the real_integrand function for integration.

```
result = integ.tricub(0.0,0.0, 0.0,PI/2,PI/2,PI/2, 1e-6);
```

The statement above performs a double integration over the triangle $\Omega$ in the $x-y$ plane with vertices ( 0.0 ), ( $0.0, \pi / 2$ ), ( $\pi / 2, \pi / 2$ ) within an absolute error value of $1 \mathrm{e}-6$ and assigns the integrated value to the variable result.

### 5.4.3 Ordinary Differential Equation

A classical ordinary differential equation (ODE) is a functional relation of the form

$$
F\left(t, x, x^{(1)}, \cdots, x^{(k)}\right)=0
$$

For unknown function $x \in C^{k}(J), J \subseteq \mathbb{R}$ and derivatives

$$
x^{(j)}(t)=\frac{d^{j}(t)}{d t^{j}}, \quad j \in \mathbb{N}_{o}
$$

where $t$ is the independent variable and $x$ the depended variable. The highest derivative appearing in $F$ is called the order of the differential equation. A solution of the ODE is a function $\phi \in C^{k}(I)$, where $I \subseteq J$ is an interval such that

$$
F\left(t, \phi(t), \phi^{1}(t) \cdots \phi^{k}(t)\right)=0 \quad \text { for all } t \in I
$$

The ODE Solver class contains two solver methods: Euler and Runge Kutta 4.
All the functions contained in ODE Solver class are listed in the Appendix D.

## Example:

Solve the following ODE

$$
\frac{d^{2} y}{d t^{2}}=-32
$$

for the initial condition $y(0)=0$ and $\frac{d y}{d t}(0)=100$.

## Solution:

```
solver = import_java_class("library.analysis.ODE_Solver")
```

The statement above imports the Integrator class and assigns to the pointer integ.

```
function odefcn(real x)
{
 return -32.0;
}
```

The code fragment above defines the ODE.

```
ic = [0.0, 100.0];
```

The statement above sets up the initial condition.

```
ye = solver.euler("odefcn(real x)", ic, 0.0, 7.0, 0.01);
```

The statement above solves the ODE for the initial condition from 0.0 to 7.0 with the step size of 0.01 using the Euler method and assigns the solution to the variable ye.

```
yr = solver.rk4("odefcn(real x)", ic, 0.0, 7.0, 0.01);
```

The statement above solves the ODE for the initial condition from 0.0 to 7.0 with the step size of 0.01 using the Runge Kutta 4 method and assigns the solution to the variable yr.

### 5.5 Estimation

The Estimation library contains methods for curve fits and interpolation. The Estimation library consists of four classes: Interpolator, Linear Regression, Polynomial Least Square, and All. All the functions in the Estimation library are listed in Appendix E.

### 5.5.1 Interpolation

Interpolation is a method of constructing new data points within the range of a discrete set of known data points.

Linear interpolation formula is given by

$$
f_{1}(x)=f\left(x_{0}\right)+\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}\left(x-x_{0}\right)
$$

Lagrange interpolation polynomial is given by

$$
P_{n}(x)=\sum_{i=0}^{n} \frac{\prod_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)} y_{i}
$$

Newton interpolation formula is given by

$$
P_{n}(x)=\alpha_{0}+\left(x-x_{0}\right) \cdot\left[\alpha_{1}+\left(x-x_{1}\right) \cdot\left[\cdots\left[\alpha_{n-1}+\alpha_{n} \cdot\left(x-x_{1}\right)\right]\right]\right]
$$

Neville's algorithm is given by

$$
\left\{\begin{array}{l}
\Delta_{j, i+j}^{\mathrm{left}}(x)=\frac{x_{i}-x}{x_{j}-x_{i+j+1}}\left[\Delta_{j+1, i}^{\mathrm{left}}(x)-\Delta_{j, i}^{\mathrm{right}}(x)\right] \\
\Delta_{j, i+j}^{\mathrm{right}}(x)=\frac{x_{i+j+1}-x}{x_{j}-x_{i+j+1}}\left[\Delta_{j+1, i}^{\mathrm{left}}(x)-\Delta_{j, i}^{\mathrm{right}}(x)\right]
\end{array}\right.
$$

where

$$
\left\{\begin{array}{l}
\Delta_{j, i}^{\mathrm{left}}(x)=P_{j}^{i}(x)-P_{j}^{i-1}(x) \\
\Delta_{j, i}^{\mathrm{right}}(x)=P_{j}^{i}(x)-P_{j+1}^{i-1}(x)
\end{array}\right.
$$

where

$$
P_{j}^{i}(x)=\frac{\left(x-x_{i+j}\right) P_{j}^{i-1}(x)+\left(x-x_{i+j}\right) P_{j+1}^{i-1}(x)}{x-x_{i+j}}
$$

The expression for cubic spline is given by

$$
P_{i(x)}=y_{i-1} A_{i}(x)+y_{i} B_{i}(x)+y_{i-1}^{\prime \prime} C_{i}(x)+y_{i}^{\prime \prime} D_{i}(x)
$$

where

$$
\begin{gathered}
\left\{\begin{array}{l}
A_{i}(x)=\frac{x_{i}-x}{x_{i}-x_{i-1}} \\
B_{i}(x)=\frac{x-x_{i-1}}{x_{i}-x_{i-1}}
\end{array}\right. \\
y_{i-1}^{\prime \prime}=\left.\frac{d^{2} P(x)}{d x^{2}}\right|_{x=x_{i-1}} \\
y_{i}^{\prime \prime}=\left.\frac{d^{2} P(x)}{d x^{2}}\right|_{x=x_{i}} \\
\left\{\begin{array}{l}
C_{i}(x)=\frac{\left[A_{i}(x)^{2}-1\right]}{6}\left(x_{i}-x_{i-1}\right)^{2} \\
D_{i}(x)=\frac{\left[B_{i}(x)^{2}-1\right]}{6}\left(x_{i}-x_{i-1}\right)^{2} \\
\frac{d P_{i}(x)}{d x}=\frac{d P_{i+1}(x)}{d x}
\end{array}\right.
\end{gathered}
$$

The Interpolator class contains Linear, Lagrange, Newton, Neville, and Spline interpolation methods. All the functions contained in the Interpolator class are listed in Appendix E.

## Example 1:

Given:

$$
x=(1900,1910,1920,1930,1940,1950,1960,1970,1980,1990)
$$

and
$y$
$=(75.995,91.972,105.711,123.203,131.669,150.697,179.323,203.212,226.505,249.633)$
find the y value corresponding to $x=1975$.

## Solution:

```
interpol = import_java_class("library.estimation.Interpolator");
```

The statement above imports the Interpolator class and assigns to the pointer interpol.

```
x = 1900.0:10:1990;
```

The statement above creates a vector whose elements are from 1900 to 1990 in the increments of 10 and assigns the vector to the variable $\mathbf{x}$.

```
 y = [75.995, 91.972, 105.711, 123.203, 131.669, 150.697, 179.323, 203.212,
```

226.505, 249.633];

The statement above creates a vector with the given data and assigns the vector to the variable $\mathbf{y}$.

```
lin = interpol.linear(t,p,1975.0);
```

The statement above interpolates $\mathbf{y}$ for $\mathbf{x}$ value of 1975 using Liner interpolation and assigns the interpolated value to the variable lin.

```
sp = interpol.spline(t,p,1975.0);
```

The statement above interpolates $\mathbf{y}$ for $\mathbf{x}$ value of 1975 using Spline interpolation and assigns the interpolated value to the variable $\mathbf{s p}$.

```
lag = interpol.lagrange(t,p,1975.0);
```

The statement above interpolates $\mathbf{y}$ for $\mathbf{x}$ value of 1975 using Lagrange interpolation and assigns the interpolated value to the variable lag.

```
nwt = interpol.newton(t,p,1975.0);
```

The statement above interpolates $\mathbf{y}$ for $\mathbf{x}$ value of 1975 using Newton interpolation and assigns the interpolated value to the variable nwt.

```
nev = interpol.neville(t,p,1975.0);
```

The statement above interpolates $\mathbf{y}$ for $\mathbf{x}$ value of 1975 using Neville interpolation and assigns the interpolated value to the variable nev.

After setting up an interpolator, the interpolator can be repeatedly used to interpolate for different x values.

## Example 2:

For the x and y values from Example 1, compute interpolated values for $\mathrm{x}=1945, \mathrm{x}=1963, \mathrm{x}=$ 1978, and $x=1987$ using Linear interpolation method.

## Solution:

## interpol.setLinear ( $t, p$ );

The statement above sets up the interpolator to use Linear method.

```
l_1945 = interpol.interpolate(1945.0);
```

The statement above interpolates $\mathbf{y}$ for $\mathbf{x}$ value of 1945 and assigns the interpolated value to the variable l_1945.

```
l_1963 = interpol.interpolate(1963.0);
```

The statement above interpolates $\mathbf{y}$ for $\mathbf{x}$ value of 1963 and assigns the interpolated value to the variable l_1963.

```
l_1978 = interpol.interpolate(1978.0);
```

The statement above interpolates $\mathbf{y}$ for $\mathbf{x}$ value of 1978 and assigns the interpolated value to the variable 1_1978.

```
l_1987 = interpol.interpolate(1987.0);
```

The statement above interpolates $\mathbf{y}$ for $\mathbf{x}$ value of 1987 and assigns the interpolated value to the variable 1_1987.

### 5.5.2 Linear Regression

Regression analysis estimates the conditional expectation of the dependent variable given the independent variables - that is, the average value of the dependent variable when the independent variables are fixed. In regression analysis, it is also of interest to characterize the variation of the dependent variable around the regression function which can be described by a probability distribution.

The method of least-square fit is a standard approach in regression analysis to the approximate solution of overdetermined systems, i.e., sets of equations in which there are more equations than unknowns. The least-square estimation is obtained by minimizing function $s(\boldsymbol{p})$ is given as

$$
s(\boldsymbol{p})=\sum_{i=1}^{N} \frac{[y-F(x, \boldsymbol{p})]^{2}}{\sigma_{i}^{2}}
$$

with respect to the parameter $\boldsymbol{p}$. "Least squares" means that the overall solution minimizes the sum of the squares of the errors made in the results of every single equation. Parameters of a functional dependence of the variable $y$ are determined from the observable quantities $x$.

A linear regression is a least-square fit with a linear function of single variable. Linear regression attempts to model the relationship between two variables by fitting a linear equation to observed data. One variable is considered to be an explanatory variable, and the other is considered to be a dependent variable. A numerical measure of association between two variables is the correlation coefficient, which is a value between -1 and 1 indicating the strength of the association of the observed data for the two variables. A linear regression line has an equation of the form

$$
y=a+b x
$$

where $x$ is the explanatory variable and $y$ is the dependent variable. The slope of the line is $b$, and $a$ is the intercept (the value of $\boldsymbol{y}$ when $\boldsymbol{x}=0$ ).

All the functions contained in the Least-Square Fit class are listed in Appendix E.

## Example:

Fit a straight line to the x and y values in the Table below:

x	y
1	0.5
2	2.5
3	2.0
4	4.0
5	3.5
6	6.0
7	5.5

## Solution:

```
lr = import_java_class("library.estimation.LinearRegression");
```

The statement above imports the Linear Regression class and assigns to the pointer 1 r .
$x 1=1.0: 7.0 ;$
The statement above creates a vector whose elements are from 1.0 to 7.0 with increments of 1.0 .

```
y1 = [0.5, 2.5, 2.0, 4.0, 3.5, 6.0, 5.5];
```

The statement above creates a vector with the given elements.

```
p1 = lr.linearRegression(x1, y1);
```

The statement above computes a polynomial using linear regression and assigns the polynomial to the variable p 1 .

```
r1 = lr.getCorrelationCoefficient();
```

The statement above computes the correlation coefficient of the linear regression and assigns the coefficient to the variable r1.

### 5.5.3 Polynomial Regression

Polynomial regression are statistical methods for estimating an underlying polynomial that describes observations. In a polynomial fit, the fit function is a polynomial of degree $m$. The parameters are numbered starting from zero. The number of free parameters is $m+1$.

Approximating a function $Z(t)$ with a polynomial

$$
\hat{z}(t)=\sum_{i=0}^{m+1} a_{i} t^{i}
$$

where hat ( $\wedge$ ) denotes the estimate. Polynomial regression models are usually fit using the method of least squares.

All the functions contained in the Polynomial Regression class are listed in Appendix E.

## Example:

Fit a second-order polynomial to the data in the table below:

$x$	$y$
0	2.1
1	7.7
2	13.6
3	27.2
4	40.9
5	61.1

## Solution:

```
pr = import_java_class("library.estimation.PolynomialRegression");
```

The statement above imports the Polynomial Regression class and assigns to the pointer pr.
x1 = 0.0:5.0;

The statement above creates a vector whose elements are from 0.0 to 5.0 with increments of 1.0 .

```
y1 = [2.1, 7.7, 13.6, 27.2, 40.9, 61.1];
```

The statement above creates a vector with the given elements.

```
p1 = pr.polynomialLSFit(x1, y1, 2);
```

The statement above computes the coefficient of a polynomial using the least square method and assigns the corresponding polynomial to the variable p 1.

### 5.6 Stochastic

The Stochastic library contains methods related to statistics and probability. The Stochastic library contains the following classes:

1. Histogram
2. Probability Distribution

The Stochastic library is documented in Appendix F.

### 5.6.1 Statistics

Given a random variable whose values are a set of data points, $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$, the $k$ th order moment of the set is defined as

$$
M_{k}=\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}
$$

The moment of the first order is the mean or the average defined as

$$
\bar{x}=M_{1}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

The central moment of $k$ th order is defined by

$$
m_{k}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{k}
$$

The variance of a set is defined by

$$
\operatorname{var}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

The standard deviation is defined by

$$
\sigma=\sqrt{v a r}=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

The skewness is defined by

$$
\text { skew }=\frac{1}{(n-1)(n-2)} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{3}
$$

The kurtosis is defined by

$$
\text { kurtosis }=\frac{n+1}{(n-1)(n-2)(n-3)} \sum_{i=1}^{n}\left(\frac{x_{i}-\bar{x}}{s}\right)^{4}-\frac{3(n-1)^{2}}{(n-2)(n-3)}
$$

### 5.6.1.1 Histogram:

A mathematical histogram which is a function that counts the number of observations that fall into each of the disjoint categories (known as bins). To construct a histogram, the first step is to divide the entire range of values into a series of intervals-and then count how many values fall into each interval. The bins are usually specified as consecutive, non-overlapping intervals of a variable. The bins (intervals) must be adjacent, and are usually equal size. A histogram is defined by three main parameters: $x_{\text {min }}$, the minimum of all values accumulated into the histogram; $w$, the bin width; and $n$, the number of bins. The $i$ th bin of a histogram is the interval $\left[x_{\min }+(i-1) w, x_{\min }+i w\right)$. The bin contents of a histogram is the number of times a value falls within each bin interval. The bin width is computed as

$$
w=\frac{x_{\max }-x_{\min }}{n}
$$

where $x_{\text {max }}$ is the maximum accumulated values.
The Histogram class implements a mathematical histogram. All the functions contained in the Histogram class are listed in Appendix F.

## Example:

Divide the data in the table below into 5 equal length intervals between 140 and 190 cm and create a histogram.

162	168	177	147
189	171	173	168
178	184	165	173
179	166	168	165

Compute the following attributes from the histogram:
count, bin width, minimum, maximum, average, standard deviation, skewness, and kurtosis.

## Solution:

```
hist = import_java_class("library.stochastic.Histogram");
```

The statement above imports the Histogram class and assigns it to the pointer hist.

```
hist.setHistogram(140.0, 190.0, 5);
```

The above statement sets up the histogram with 5 bins and interval between 140.0 and 190.0.

```
 data = [162, 168, 177, 147, 189, 171, 173, 168, 178, 184, 165, 173, 179,
166, 168, 165];
```

The above statement creates a vector with the given data and assigns it to the variable data.

```
hist.processData(data);
```

The above statement creates a mathematical using the data.

```
c = hist.count();
```

The above statement counts the number of data and assigns the result in the variable $\mathbf{c}$.

```
w = hist.binWidth();
```

The above statement computes the bin width and assigns the result in the variable $\mathbf{w}$.

```
min = hist.minimum();
```

The above statement computes the minimum value of the data and assigns the result in the variable min.

```
max = hist.maximum();
```

The above statement computes the maximum value of the data and assigns the result in the variable max.

```
ave = hist.average();
```

The above statement computes the average value of the data and assigns the result in the variable ave.

```
sd = hist.standardDeviation();
```

The above statement computes the standard deviation of the data and assigns the result in the variable sd.

```
skew = hist.skewness();
```

The above statement computes the skewness of the data and assigns the result in the variable skew.

```
k = hist.kurtosis();
```

The above statement computes the kurtosis of the data and assigns the result in the variable $\mathbf{k}$.

### 5.6.2 Probability

A probability density function defines the probability of finding a continuous random variable within an infinitesimal interval. Formally, if $X$ is a continuous random variable, then it has a probability density function $f(x)$, and therefore its probability of falling into a given interval, say $[a, b]$ is given by the integral

$$
\operatorname{Prob}[a \leq X \leq b]=\int_{a}^{b} f(x) d x
$$

A continuous cumulative distribution function is defined as

$$
F(x)=\mu(-\infty, x]=\int_{-\infty}^{x} f(t) d t
$$

The moment of $k$ th order for a probability density function $f(x)$ is defined by

$$
M_{k}=\int x^{k} f(x) d x
$$

The mean or average of the distribution is

$$
\mu=M_{1}=\int x f(x) d x
$$

The central moment of the $k$ th order defined by

$$
m_{k}=\int(x-\mu)^{k} f(x) d x
$$

The skewness is defined by

$$
\text { skew }=\frac{\int x^{3} f(x) d x}{\sigma^{3}}
$$

The kurtosis is defined by

$$
\text { kurtosis }=\frac{\int x^{4} f(x) d x}{\sigma^{4}}-3
$$

### 5.6.2.1 Probability Distributions

The Stochastic library contains the following probability distributions:

1. Uniform Distribution
2. Triangular Distribution
3. Normal Distribution
4. Log Normal Distribution
5. Student Distribution
6. Gamma Distribution
7. Chi-Squared Distribution
8. Exponential Distribution
9. Laplace Distribution
10. Beta Distribution
11. Fisher Snedecor Distribution
12. Fisher Tippett Distribution
13. Weibull Distribution
14. Cauchy Distribution
15. Histogrammed Distribution
16. All Distribution

### 5.6.2.2 Uniform Distribution

The continuous uniform distribution or rectangular distribution is a family of symmetric probability distributions such that for each member of the family, all intervals of the same length on the distribution's support are equally probable. The support is defined by the two parameters, $a$ and $b$, which are its minimum and maximum values.

Properties of the uniform distribution is given in the table below:

Property	Value
Notation	$u(a, b)$
Parameters	$-\infty<a<b<+\infty$
Support	$x \in[a, b]$
Probability density function	$\left\{\begin{array}{cc} \frac{1}{b-a} & \text { for } a \leq x \leq b \\ 0 & \text { otherwise } \end{array}\right.$
Distribution function	$\left\{\begin{aligned} 0 & \text { for } x<a \\ \frac{x-a}{b-a} & \text { for } \\ & a \leq x<b \\ 1 & \text { for } \end{aligned}\right.$
Mean	$\frac{1}{2}(a+b)$
Median	$\frac{1}{2}(a+b)$
Mode	Any value in ( $a, b$ )
Variance	$\frac{1}{12}(b-a)^{2}$
Skewness	0
Kurtosis	$-\frac{6}{5}$

## Example:

Generate a uniformly distributed random number between -1 and 1 .

## Solution:

```
dist = import_java_class("library.stochastic.ProbabilityDistribution");
```

The statement above imports the Probability Distribution class and assigns it to the pointer dist.

```
r = dist.uniform(-1.0,1.0);
```

The above statement computes a random number based on a uniform distribution ranged between of -1.0 to 1.0 and assigns the random value to the variable $r$.

Alternatively, the same result can be obtained using the following statements.

```
dist.setUniform(-1.0, 1.0);
r = dist.random();
```


### 5.6.2.3 Triangular Distribution

A triangular distribution is a continuous probability distribution with a probability density function shaped like a triangle. It is defined by three values: the minimum value a , the maximum value b , and the peak value c , where $a<b$ and $a \leq c \leq b$.

Properties of the triangular distribution is given in the table below:

Property	Value
Parameters	$\begin{array}{ll} a: & a \in(-\infty,+\infty) \\ b: & a<b \\ c: & a \leq c \leq b \end{array}$
Support	$[a, b]$
Probability density function (PDF)	$\left\{\begin{array}{cl} 0 & \text { for } x<a \\ \frac{2(x-a)}{(b-a)(c-a)} & \text { for } a \leq x \leq c \\ \frac{2}{b-a} & \text { for } x=c \\ \frac{2(b-x)}{(b-a)(b-c)} & \text { for } c \leq x \leq b \\ 0 & \text { for } x>b \end{array}\right.$
Cumulative Distribution function (CDF)	$\left\{\begin{array}{cl} 0 & \text { for } x \leq a \\ \frac{(x-a) 2}{(b-a)(c-a)} & \text { for } a<x \leq c \\ 1-\frac{(b-x)^{2}}{(b-a)(b-c)} & \text { for } c<x<b \\ \frac{2(b-x)}{(b-a)(b-c)} & \text { for } c \leq x \leq b \\ 1 & \text { for } x \geq b \end{array}\right.$
Mean	$\frac{a+b+c}{3}$
Median	$\begin{cases}a+\sqrt{\frac{(b-a)(c-a)}{2}} & \text { for } c \geq \frac{a+b}{2} \\ b-\sqrt{\frac{(b-a)(c-a)}{2}} & \text { for } c \geq \frac{a+b}{2}\end{cases}$
Mode	$c$
Variance	$\frac{a^{2}+b^{2}+c^{2}-a b-a c-b c}{18}$


Skewness	$\frac{\sqrt{2}(a+b-2 c)(2 a-b-c)(a-2 b+c)}{5\left(a^{2}+b^{2}+c^{2}-a b-a c-b c\right)^{\frac{3}{2}}}$
Kurtosis	$-3 / 5$

## Example:

Generate a random number using a triangular distribution with minimum value $=1$, maximum value $=8$ and peak value $=3$.

## Solution:

```
dist = import_java_class("library.stochastic.ProbabilityDistribution");
```

The statement above imports the Probability Distribution class and assigns it to the pointer dist.

```
r = dist.triangular(1.0, 8.0, 3.0);
```

The above statement computes a random number based on a triangular distribution with minimum value $=1$, maximum value $=8$ and peak value $=3$ and assigns the random value to the variable r.

Alternatively, the same result can be obtained using the following statements.

```
dist.setTriangular(1.0, 8.0, 3.0);
r = dist.random();
```


### 5.6.2.4 Normal Distribution

The normal distribution is the most important probability distribution. Normal distributions are symmetric and have bell-shaped density curves with a single peak. Most other distributions tend towards the normal distribution when some of their parameters become large. In normal distribution, two quantities must be specified: the mean $\mu$, where the peak of the density occurs, and the standard deviation $\sigma$, which indicates the spread of the bell curve.

All normal density curves satisfy the following property which is often referred to as the Empirical Rule.
$68 \%$ of the observations fall within 1 standard deviation of the mean, that is, between $\mu-\sigma$ and $\mu+\sigma$.
$95 \%$ of the observations fall within 2 standard deviations of the mean, that is, between $\mu-2 \sigma$ and $\mu+2 \sigma$.
$99.7 \%$ of the observations fall within 3 standard deviations of the mean, that is, between $\mu-3 \sigma$ and $\mu+3 \sigma$.

Thus, for a normal distribution, almost all values lie within 3 standard deviations of the mean.
Properties of the normal distribution is given in the table below:

Property	$\quad$ Value
Notation	$\mathcal{N}(\mu, \sigma)$
Parameters	$\mu \in \mathbb{R}$
	$0<\sigma^{2}<+\infty$
Support	$x \in \mathbb{R}$
Probability density function (PDF)	$\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$
Cumulative Distribution function   (CDF)	$\frac{1}{2}\left[1+\operatorname{erf}\left(\frac{x-\mu}{\sigma \sqrt{2}}\right)\right]$
Mean	$\mu$
Median	$\mu$
Mode	$\mu$
Variance	$\sigma^{2}$
Skewness	0
Kurtosis	0

## Example:

Generate a random number using a normal distribution with mean value $=0$, standard deviation $=0.25$.

## Solution:

```
dist = import_java_class("library.stochastic.ProbabilityDistribution");
```

The statement above imports the Probability Distribution class and assigns it to the pointer dist.

```
r = dist.normal(0.0, 0.25);
```

The above statement computes a random number based on a triangular distribution with mean value $=0$, standard deviation $=0.25$.

Alternatively, the same result can be obtained using the following statements.

```
dist.setNormal(0.0, 0.25);
r = dist.random();
```


### 5.6.2.5 Log Normal Distribution

A log-normal (or lognormal) distribution is a continuous probability distribution of a random variable whose logarithm is normally distributed. Thus, if the random variable $X$ is log-normally distributed, then $Y=\ln (X)$ has a normal distribution. Likewise, if $Y$ has a normal distribution, then $X=\exp (Y)$ has a log-normal distribution. A random variable which is log-normally distributed takes only positive real values. The distribution is occasionally referred to as the Galton distribution or Galton's distribution, after Francis Galton.

A log-normal process is the statistical realization of the multiplicative product of many independent random variables, each of which is positive. This is justified by considering the central limit theorem in the log domain. The log-normal distribution is the maximum entropy probability distribution for a random variate $X$ for which the mean and variance of $\ln (X)$ are specified.

Properties of the normal distribution is given in the table below:

Property	Value
Notation	$\ln \mathcal{N}\left(\mu, \sigma^{2}\right)$
Parameters	$\mu \in \mathbb{R} \quad-$ location
	$0<\sigma^{2}<+\infty-$ scale
Support	$x \in(0,+\infty)$
Probability density function (PDF)	$\frac{1}{x \sigma \sqrt{2 \pi}} e^{-\frac{(\ln x-\mu)^{2}}{2 \sigma^{2}}}$
Cumulative Distribution function   (CDF)	$\frac{1}{2}\left[1+\operatorname{erf}\left(\frac{\ln x-\mu}{\sqrt{2} \sigma}\right)\right]$
Mean	$e^{\mu+\sigma^{2} / 2}$
Median	$e^{\mu}$
Mode	$e^{\mu-\sigma^{2}}$
Variance	$\left(e^{\sigma^{2}}-1\right) e^{2 \mu+\sigma^{2}}$
Skewness	$\left(e^{\left.\sigma^{2}+2\right) \sqrt{e^{\sigma^{2}}-1}}\right.$
Kurtosis	$e^{4 \sigma^{2}}+2 e^{3 \sigma^{2}}+3 e^{2 \sigma^{2}}-6$

## Example:

Example for the normal distribution can be used for the log-normal distribution.

### 5.6.2.6 Student's T Distribution

Student's $\boldsymbol{t}$-distribution (or simply the $\boldsymbol{t}$-distribution) is any member of a family of continuous probability distributions that arises when estimating the mean of a normally distributed population in situations where the sample size is small and population standard deviation is unknown developed by William Sealy Gosset under the pseudonym Student. Whereas a normal distribution describes a full population, $t$-distributions describe samples drawn from a full
population; accordingly, the $t$-distribution for each sample size is different, and the larger the sample, the more the distribution resembles a normal distribution.

The $t$-distribution plays a role in a number of widely used statistical analyses, including the Student's $t$-test for assessing the statistical significance of the difference between two sample means, the construction of confidence intervals for the difference between two population means, and in linear regression analysis. The Student's $t$-distribution also arises in the Bayesian analysis of data from a normal family.

The $t$-distribution is symmetric and bell-shaped, like the normal distribution, but has heavier tails, meaning that it is more prone to producing values that fall far from its mean. This makes it useful for understanding the statistical behavior of certain types of ratios of random quantities, in which variation in the denominator is amplified and may produce outlying values when the denominator of the ratio falls close to zero. The Student's $t$-distribution is a special case of the generalized hyperbolic distribution.

Properties of the Student's $t$-distribution distribution is given in the table below:

Property	$\quad$$n$   (a positive integer)
Parameters	$(-\infty,+\infty)$
Support	$\frac{1}{\sqrt{n} B\left(\frac{n}{2}, \frac{1}{2}\right)}\left(1+\frac{t^{2}}{n}\right)^{-\frac{n+1}{2}}$
Probability density function (PDF)	$\left\{\begin{array}{l}\frac{1+B\left(\frac{n}{n+x^{2}} ; \frac{n}{2}, \frac{1}{2}\right)}{2} \text { for } x \geq 0 \\ \hline \begin{array}{l}\text { Cumulative Distribution function } \\ \text { (CDF) }\end{array} \\ \hline \text { Mean } \\ \hline \text { Variance } \\ \hline \text { Skewness } \\ \hline \text { Kurtosis } \\ \hline\end{array} \begin{array}{l}\frac{n}{n-2} \text { for } n>0 \\ \text { Undefined otherwise }\end{array}\right.$

## Example:

Generate a random number using a student's $t$-distribution with degrees-of-freedom $=8$.

## Solution:

```
dist = import_java_class("library.stochastic.ProbabilityDistribution");
```

The statement above imports the Probability Distribution class and assigns it to the pointer dist.

```
r = dist.student(8.0);
```

The above statement computes a random number based on a triangular distribution with degrees-of-freedom $=8$.

Alternatively, the same result can be obtained using the following statements.

```
dist.setStudent(8);
r = dist.random();
```


### 5.6.2.7 Gamma Distribution

The gamma distribution is a two-parameter family of continuous probability distributions. The common exponential distribution and chi-squared distribution are special cases of the gamma distribution. There are three different parameterizations in common use:

1. With a shape parameter $k$ and a scale parameter $\theta$.
2. With a shape parameter $\alpha=k$ and an inverse scale parameter $\beta=1 / \theta$, called a rate parameter.
3. With a shape parameter $k$ and a mean parameter $\mu=k / \beta$.

In each of these three forms, both parameters are positive real numbers.
Properties of the normal distribution is given in the table below:

Property	Value	
Parameters	$k>0$ shape $\quad \alpha>0$ shape   $\theta>0$ scale $\quad \beta>0 \quad$ scale	
Support	$x \in(0,+\infty)$	
Probability density function (PDF)	$\frac{x^{\alpha-1}}{\beta^{\alpha} \Gamma(\alpha)} e^{-\frac{x}{\beta}}$	
Cumulative Distribution function   (CDF)	$\left(\frac{x}{\beta}, \alpha\right)$	
Mean	$\alpha \beta$	
Variance	$\alpha \beta^{2}$	
Skewness	$\frac{2}{\sqrt{\alpha}}$	
Kurtosis	$\frac{6}{\alpha}$	

## Example:

Generate a random number using a gamma distribution with shape value $=9.56$, scale value $=$ 38.94 .

## Solution:

```
dist = import_java_class("library.stochastic.ProbabilityDistribution");
```

The statement above imports the Probability Distribution class and assigns it to the pointer dist.

```
r = dist.gamma(9.56, 38.94);
```

The above statement computes a random number based on a gamma distribution with shape value $=9.56$, scale value $=38.94$.

Alternatively, the same result can be obtained using the following statements.

```
dist.setGamma(9.56, 38.94);
r = dist.random();
```


### 5.6.2.8 Chi-Squared Distribution

The chi-squared distribution (also chi-square or $\boldsymbol{\chi}^{\mathbf{2}}$-distribution) with $k$ degrees of freedom is the distribution of a sum of the squares of $k$ independent standard normal random variables. It is a special case of the gamma distribution.

Properties of the Chi-Squared distribution is given in the table below:

Property	Value
Notation	$\chi^{2}(k)$ or $\chi_{k}^{2}$
Parameters	$k \in \mathbb{N}>0($ known as "degrees-of-   freedom")
Support	$\frac{x \in[0,+\infty)}{2^{\frac{k}{2}} \Gamma\left(\frac{k}{2}\right)} x^{\frac{k}{2}-1} e^{-\frac{x}{2}}$
Probability density   function (PDF)	$\frac{1}{\Gamma\left(\frac{k}{2}\right)} \gamma\left(\frac{k}{2}, \frac{x}{2}\right)$
Cumulative Distribution   function (CDF)	$k$
Mean	$\approx k\left(1-\frac{2}{9 k}\right)^{3}$
Median	$\max \{k-2,0\}$
Mode	$2 k$
Variance	$\sqrt{8 / k}$
Skewness	$\frac{12}{k}$
Kurtosis	

## Example:

Example for the student's t-distribution can be used for the chi-squared distribution.

### 5.6.2.9 Exponential Distribution

The exponential distribution (a.k.a. negative exponential distribution) is the probability distribution that describes the time between events in a Poisson process, i.e. a process in which events occur continuously and independently at a constant average rate. It is a specific case of the gamma distribution. It is the continuous analogue of the geometric distribution, and it has the key property of being memory less.

Properties of the exponential distribution is given in the table below:

Property	Value
Notation	$\lambda>0$ rate, or inverse scale
Parameters	$x \in[0,+\infty)$
Support	$\lambda e^{-\lambda x}$
Probability density   function (PDF)	$1-e^{-\lambda x}$
Cumulative Distribution   function (CDF)	$\lambda^{-1}(=\beta)$
Mean	$\lambda^{-1} \ln (2)$
Median	0
Mode	6
Variance	$\sqrt{8 / k}$
Skewness	$\frac{12}{k}$
Kurtosis	

## Example:

Generate a random number using an exponential distribution with rate $=0.5$.

## Solution:

```
dist = import_java_class("library.stochastic.ProbabilityDistribution");
```

The statement above imports the Probability Distribution class and assigns it to the pointer dist.

```
r = dist.exponential(0.5);
```

The above statement computes a random number based on an exponential distribution with rate $=$ 0.5 .

Alternatively, the same result can be obtained using the following statements.

```
dist.setExponential(0.5);
r = dist.random();
```


### 5.6.2.10 Laplace Distribution

The Laplace distribution is a continuous probability distribution named after Pierre-Simon Laplace. It is also sometimes called the double exponential distribution, because it can be thought of as two exponential distributions (with an additional location parameter) spliced together back-to-back, although the term 'double exponential distribution' is also sometimes used to refer to the Gumbel distribution. The difference between two independent identically distributed exponential random variables is governed by a Laplace distribution. Increments of Laplace motion or a variance gamma process evaluated over the time scale also have a Laplace distribution.

Properties of the Laplace distribution is given in the table below:

Property	Value
Notation	
Parameters	$\mu$ location (real) $b>0$ scale (real)
Support	$x \in(-\infty,+\infty)$
Probability density function (PDF)	$\frac{1}{2 b} \exp \left(-\frac{\|x-\mu\|}{b}\right)$
Cumulative Distribution function (CDF)	$\begin{cases}\frac{1}{2} \exp \left(-\frac{x-\mu}{b}\right) & \text { if } x<\mu \\ 1-\frac{1}{2} \exp \left(-\frac{x-\mu}{b}\right) & \text { if } x \geq \mu\end{cases}$
Mean	$\mu$
Median	$\mu$
Mode	$\mu$
Variance	$2 b^{2}$
Skewness	0
Kurtosis	3

## Example:

Generate a random number using a Laplace distribution with location $=0.0$ and scale $=1.0$.

## Solution:

```
dist = import_java_class("library.stochastic.ProbabilityDistribution");
```

The statement above imports the Probability Distribution class and assigns it to the pointer dist.

```
r = dist.laplace(0.0, 1.0);
```

The above statement computes a random number based on a Laplace distribution with location $=$ 0.0 and scale $=1.0$.

Alternatively, the same result can be obtained using the following statements.

```
dist.setLaplace(0.0, 1.0);
r = dist.random();
```


### 5.6.2.11 Beta Distribution

The Beta distribution is a family of continuous probability distributions defined on the interval [ 0,1 ] parameterized by two positive shape parameters, denoted by $\alpha$ and $\beta$, that appear as exponents of the random variable and control the shape of the distribution.

Properties of the Beta distribution is given in the table below:

Property	Value
Notation	$\operatorname{Beta(\alpha ,\beta )}$$\alpha>0$ shape (real)   $\beta>0$ shape (real)
Parameters	$x \in(0,1)$
Support	$\frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha, \beta)}$
Probability density function (PDF)	$E[X]=\frac{\alpha}{\alpha+\beta}$   $E[\ln X]=\psi(\alpha)-\psi(\alpha+\beta)$
Cumulative Distribution function   (CDF)	$I_{x}(\alpha, \beta)$
Mean	$\approx \frac{\alpha-\frac{1}{3}}{\alpha+\beta-\frac{2}{3}}$ for $\alpha, \beta>1$
Median	$\frac{\alpha-1}{\alpha+\beta-2}$ for $\alpha, \beta>1$
Mode	$\operatorname{var}[x]=\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}$   $\operatorname{var}[\ln X]=\psi_{1}(\alpha)-\psi_{1}(\alpha+\beta)$   Variance
Skewness	$\frac{2(\beta-\alpha) \sqrt{\alpha+\beta+2}}{(\alpha+\beta+2) \sqrt{\alpha \beta}}$
Kurtosis	$\frac{6\left[(\alpha-\beta)^{2}(\alpha+\beta+1)-\alpha \beta(\alpha+\beta+2)\right]}{\alpha \beta(\alpha+\beta+2)(\alpha+\beta+3)}$

## Example:

Generate a random number using a beta distribution with $\alpha=2.0$ and $\beta=3.0$.

## Solution:

```
dist = import_java_class("library.stochastic.ProbabilityDistribution");
```

The statement above imports the Probability Distribution class and assigns it to the pointer dist.

```
r = dist.beta(2.0, 3.0);
```

The above statement computes a random number based on a beta distribution with $\alpha=2.0$ and $\beta=3.0$.

Alternatively, the same result can be obtained using the following statements.

```
dist.setBeta(2.0, 3.0);
r = dist.random();
```


### 5.6.2.12 Fisher-Snedecor Distribution

The Fisher-Snedecor distribution (after Ronald Fisher and George W. Snedecor), also known as Snedecor's $\boldsymbol{F}$ distribution or the $\boldsymbol{F}$-distribution is a continuous probability distribution.

The $F$-distribution arises frequently as the null distribution of a test statistic, most notably in the analysis of variance.

Properties of the Fisher-Snedecor distribution is given in the table below:

Property	Value
Parameters	$n, d>0$ deg of freedom
Support	$[0,+\infty)$
Probability density   function (PDF)	$\frac{\sqrt{\frac{(n x)^{n} d^{d}}{(n x+d)^{n}+d}}}{x B\left(\frac{n}{2}, \frac{d}{2}\right)}$
Cumulative Distribution   function (CDF)	$F(x)=I \frac{n x}{n x+d}\left(\frac{n}{2}, \frac{d}{2}\right)$
Mean	$\frac{d}{d-2}$ for $d>2$   Undefined otherwise
Mode	$\frac{n-2}{n} \frac{d}{d+2}$ for $d>2$
Variance	$\frac{2 d^{2}(n+d-2)}{n(d-n)^{2}(d-4)}$ for $d>4$   Undefined otherwise
Skewness	$\frac{(2 n+d-2) \sqrt{8(d-4)}}{(d-6) \sqrt{n(n+d-2)}}$ for $d>6$
Undefined otherwise	


Kurtosis	$3+12 \frac{n(5 d-22)(n+d-2)+(d-4)(d-2)^{2}}{n(d-6)(d-8)(n+d-2)}$ for               Undefined otherwise

Where, $B$ is the Beta function defined in terms of Gamma function $(\Gamma)$ as

$$
B(n, d)=\frac{\Gamma(n) \Gamma(d)}{\Gamma(n+d)}
$$

## Example:

Generate a random number using a Fisher-Snedecor distribution with degrees-of-freedom, $\mathrm{n}=$ 10 and degrees-of-freedom, $\mathrm{d}=15$.

## Solution:

```
dist = import_java_class("library.stochastic.ProbabilityDistribution");
```

The statement above imports the Probability Distribution class and assigns it to the pointer dist.

```
r = dist.beta(10, 15);
```

The above statement computes a random number based on a Fisher-Snedecor distribution with degrees-of-freedom, $\mathrm{n}=10$ and degrees-of-freedom, $\mathrm{d}=15$.

Alternatively, the same result can be obtained using the following statements.

```
dist.setFisherSnedecor(10, 15);
r = dist.random();
```


### 5.6.2.13 Fisher Tippett Distribution

the Fisher-Tippett distribution, named after Ronald Fisher and L. H. C. Tippett, also known as generalized extreme value ( $\mathbf{G E V}$ ) distribution is a family of continuous probability distributions developed within extreme value theory to combine the Gumbel, Fréchet and Weibull families also known as type I, II and III extreme value distributions. By the extreme value theorem the GEV distribution is the only possible limit distribution of properly normalized maxima of a sequence of independent and identically distributed random variables.

Properties of the Fisher-Tippett distribution is given in the table below:

Property	Value
Notation	$\operatorname{GEV}(\mu, \sigma, \xi)$
Parameters	$\mu \in \mathbb{R}$-- location,   $\sigma>0$-- scale,   $\xi \in \mathbb{R}$-- shape.
Support	$\begin{array}{ll} x \in[\mu-\sigma / \xi,+\infty) & \text { when } \xi>0 \\ x \in(-\infty,+\infty) & \text { when } \xi=0 \\ x \in(-\infty, \mu-\sigma / \xi) & \text { when } \xi<0 \end{array}$
Probability density function (PDF)	$\frac{1}{\sigma} t(x)^{\xi+1} e^{-t(x)}$   where $t(x)= \begin{cases}\left(1+\left(\frac{x-\mu}{\sigma}\right) \xi\right)^{-\frac{1}{\xi}} & \text { if } \xi \neq 0 \\ e^{-(x-\mu) / \sigma} & \text { if } \xi=0\end{cases}$
Cumulative Distribution function (CDF)	$e^{-t(x)}$, for $x \in$ range
Mean	$\left\{\begin{array}{cl} \mu+\sigma \frac{\Gamma(1-\xi)-1}{\xi} & \text { if } \xi \neq 0, \xi=1, \\ \mu+\sigma \gamma & \text { if } \xi=0, \\ \infty & \text { if } \xi \geq 1, \end{array}\right.$   Where $\gamma$ is Euler's constant.
Median	$\begin{cases}\mu+\sigma \frac{(\ln 2)^{-\xi}-1}{\xi} & \text { if } \xi \neq 0, \\ \mu-\sigma \ln \ln 2 & \text { if } \xi \neq 0 .\end{cases}$
Mode	$\begin{cases}\mu+\sigma \frac{(1+\xi)^{-\xi}-1}{\xi} & \text { if } \xi \neq 0, \\ \mu & \text { if } \xi \neq 0 .\end{cases}$
Variance	$\left\{\begin{array}{cc} \sigma^{2}\left(g_{2}-g_{1}^{2}\right) / \xi^{2} & \text { if } \xi \neq 0, \xi=1, \\ \sigma^{2} \frac{\pi^{2}}{6} & \text { if } \xi=0, \\ \infty & \text { if } \xi \geq \frac{1}{2} . \end{array}\right.$   where $g_{k}=\Gamma(1-k \xi)$


| Skewness | $\left\{\begin{array}{ll} \begin{cases}\frac{g_{3}-3 g_{1} g_{2}+2 g_{1}}{\left(g_{2}-g_{1}^{2}\right)^{\frac{3}{2}}} & \text { if } \xi>0, \\ -\frac{g_{3}-3 g_{1} g_{2}+2 g_{1}^{3}}{\left(g_{2}-g_{1}^{2}\right)^{\frac{3}{2}}} & \text { if } \xi<0, \\ \begin{array}{ll}\frac{12 \sqrt{6} \zeta(3)}{\pi^{3}} & \text { if } \xi=0 . \\ \text { where } \zeta(x) \text { is Riemann zeta function }\end{array} \\ \hline \text { Kurtosis } & \left\{\begin{array}{cc}\frac{g_{4}-4 g_{1} g_{3}+6 g_{2} g_{1}^{2}-3 g_{1}^{4}}{\left(g_{2}-g_{1}^{2}\right)^{2}} & \text { if } \xi \neq 0, \xi=\frac{1}{4^{\prime}} \\ \frac{12}{56} & \text { if } \xi=0, \\ \infty & \text { if } \xi \geq \frac{1}{4} .\end{array}\right. \\ \hline\end{cases} \end{array}\right\}$  |
| :--- | :--- | :--- |

## Example:

Generate a random number using a Fisher-Tippett distribution with mean $=0.0$ and standard deviation $=1.0$.

## Solution:

```
dist = import_java_class("library.stochastic.ProbabilityDistribution");
```

The statement above imports the Probability Distribution class and assigns it to the pointer dist.

```
r = dist.fisherTippett(0.0, 1.0);
```

The above statement computes a random number based on a Fisher-Tippett distribution with mean $=0.0$ and standard deviation $=1.0$.

Alternatively, the same result can be obtained using the following statements.

```
dist.setFisherTippett(0.0, 1.0);
r = dist.random();
```


### 5.6.2.14 Weibull Distribution

the Weibull distribution is a continuous probability distribution. It is named after Swedish mathematician Waloddi Weibull, who described it in detail in 1951, although it was first
identified by Fréchet (1927) and first applied by Rosin \& Rammler (1933) to describe a particle size distribution.

Properties of the Weibull distribution is given in the table below:

Property	Value
Notation	
Parameters	$\begin{array}{ll} \hline \lambda \in(-\infty,+\infty) & \text {-- scale } \\ k \in(-\infty,+\infty) & \text {-- shape } \end{array}$
Support	$x \in[0,+\infty)$
Probability density function (PDF)	$\begin{cases}\frac{k}{\lambda}\left(\frac{x}{\lambda}\right)^{k-1} e^{-(x / \lambda)^{k}} & \text { for } x \geq 0 \\ 0 & \text { for } x<0\end{cases}$
Cumulative Distribution function (CDF)	$\begin{cases}1-e^{-(x / \lambda)^{k}} & \text { for } x \geq 0 \\ 0 & \text { for } x<0\end{cases}$
Mean	$\lambda \Gamma(1+1 / k)$
Median	$\lambda(\ln (2))^{1 / k}$
Mode	$\begin{cases}\lambda\left(\frac{k-1}{k}\right)^{\frac{1}{k}} & \text { for } k>1 \\ 0 & \text { for } k=1\end{cases}$
Variance	$\lambda^{2}\left[\Gamma\left(1+\frac{2}{k}\right)-\left(\Gamma\left(1+\frac{1}{k}\right)\right)^{2}\right]$
Skewness	$\frac{\Gamma(1+3 / k) \lambda^{3}-3 \mu \sigma^{2}-\mu^{3}}{\sigma^{3}}$
Kurtosis	

## Example:

Generate a random number using a Weibull distribution with shape $=1.0$ and scale $=2.0$.

## Solution:

```
dist = import_java_class("library.stochastic.ProbabilityDistribution");
```

The statement above imports the Probability Distribution class and assigns it to the pointer dist.

```
r = dist.weibull(1.0, 2.0);
```

The above statement computes a random number based on a Weibull distribution with shape $=$ 1.0 and scale $=2.0$.

Alternatively, the same result can be obtained using the following statements.

```
dist. setWeibull(1.0, 2.0);
r = dist.random();
```


### 5.6.2.15 Cauchy Distribution

The Cauchy distribution, named after Augustin Cauchy, is a continuous probability distribution. It is also known, especially among physicists, as the Lorentz distribution (after Hendrik Lorentz), Cauchy-Lorentz distribution, Lorentz(ian) function, or Breit-Wigner distribution. The simplest Cauchy distribution is called the standard Cauchy distribution. It is the distribution of a random variable that is the ratio of two independent standard normal variables and has the probability density function.

Properties of the Cauchy distribution is given in the table below:

Property	Value
Parameters	$x_{0}$ location (real)   $Y>0$ scale (real)
Support	$(-\infty,+\infty)$
Probability density   function (PDF)	$\frac{1}{\pi \gamma\left[1+\left(\frac{x-x_{0}}{\gamma}\right)^{2}\right]}$
Cumulative Distribution   function (CDF)	$\frac{1}{\pi} \arctan \left(\frac{x-x_{0}}{\gamma}\right)+\frac{1}{2}$
Mean	Undefined
Median	$x_{0}$
Mode	$x_{0}$
Variance	Undefined
Skewness	Undefined
Kurtosis	Undefined

## Example:

Generate a random number using a Cauchy distribution with location $=0.0$ and scale $=1.0$.

## Solution:

```
dist = import_java_class("library.stochastic.ProbabilityDistribution");
```

The statement above imports the Probability Distribution class and assigns it to the pointer dist.

```
r = dist.cauchy(0.0, 1.0);
```

The above statement computes a random number based on a Cauchy distribution with middle $=$ 0.0 and width $=1.0$.

Alternatively, the same result can be obtained using the following statements.

```
dist. setCauchy(0.0, 1.0);
r = dist.random();
```


### 5.6.2.16 Histogrammed Distribution

### 5.7 Frequency Domain

The Frequency Domain library contains methods that transform time domain data into frequency domain data and vice versa. The Frequency Domain library contains one class, FFT. The Frequency Domain library is documented in Appendix G.

### 5.7.1 FFT

The Fourier transform decomposes a signal (a time domain function) into the frequencies that make up the signal. The Fourier transform of a function of time itself is a complex-valued function of frequency, whose absolute value represents the amount of that frequency present in the original function, and whose complex argument is the phase offset of the basic sinusoid in that frequency. The Fourier transform is called the frequency domain representation of the original signal. The equation for Fourier transform is

$$
G(f)=\int_{-\infty}^{\infty} g(t) e^{-i 2 \pi f t} d t
$$

The equation for inverse Fourier transform is

$$
g(t)=\int_{-\infty}^{\infty} G(f) e^{i 2 \pi f t} d f
$$

A fast Fourier transform (FFT) algorithm computes the discrete Fourier transform (DFT) of a sequence, or its inverse. Fourier analysis converts a signal from its original domain (often time or space) to a representation in the frequency domain and vice versa. An FFT reduces the number of operations of computing the DFT from $O\left(n^{2}\right)$ to $O(n \log n)$, where $n$ is the data size. An FFT is much faster than DFT at evaluating the DFT definition directly, but produces exactly the same result.

Let $x_{0}, \cdots, x_{N-1}$ be complex numbers. The DFT is defined by the formula

$$
X_{k}=\sum_{n=0}^{N-1} x_{n} e^{-i 2 \pi k \frac{n}{N}} \quad k=0, \ldots, N-1
$$

All the functions contained in the FFT class are listed in Appendix G.

## Example:

Given the signal $x=\cos \left(\frac{2 \pi n}{10}\right)$ where $n=0,1, \ldots, 28,29$.
Perform FFT for 30, 64, 128, and 256 samples.

## Solution:

```
fd = import_java_class("library.frequency_domain.FFT");
```

The statement above imports the FFT class and assigns it to the pointer fd.

```
X30 = fd.fft(x).magnitude;
```

The statement above performs FFT for 30 (number of data points in $x$ ) samples and assigns the output to the variable .

```
X64 = fd.fft(x, 64).magnitude;
```

The statement above performs FFT for 30 samples and assigns the output to the variable $\mathbf{x} 64$.

```
X128 = fd.fft(x, 128).magnitude;
```

The statement above performs FFT for 30 samples and assigns the output to the variable x128.

```
X256 = fd.fft(x, 256).magnitude;
```

The statement above performs FFT for 30 samples and assigns the output to the variable x256.

## Appendix A -- Library: General Math

## A. 1 Constants:

Identifier	Description	Type
$\mathbf{E}$	The real value that is closer than any other to $e$, the base of the natural logarithms.	real
PI	The real value that is closer than any other to $p i$, the ratio of the circumference of a circle   to its diameter.	real

## A. 2 Functions

Call Signature	Description	Return Type
abs (real a)	Returns the absolute value of a real value.	real
abs (integer a)	Returns the absolute value of a integer value.	integer
abs (realVector a)	Returns a vector whose elements are the absolute values of the elements of the input vector a.	realVector
abs (realMatrix a)	Returns a matrix whose elements are the absolute values of the elements of the input matrix a.	realMatrix
acos (real a)	Returns the arc cosine of a value; the returned angle is in the range 0.0 through pi.	real
acos (integer a)	Returns the arc cosine of a value; the returned angle is in the range 0.0 through pi.	real
acos (realVector a)	Returns a vector whose elements are the arc cosines of the elements of the input vector a; the returned angles are in the range 0.0 through pi.	realVector
acos (realMatrix a)	Returns a matrix whose elements are the arc cosines of the elements of the input matrix a; the returned angles are in the range 0.0 through pi.	realMatrix
asin(real a)	Returns the arc sine of a value; the returned angle is in the range -pi/2 through pi/2.	real
asin (integer a)	Returns the arc sine of a value; the returned angle is in the range -pi/2 through pi/2.	real
asin (realVector a)	Returns a vector whose elements are the arc sines of the elements of the input vector a; the returned angle is in the range -pi/2 through pi/2.	realVector
asin (realMatrix a)	Returns a matrix whose elements are the arc sines of the elements of the input matrix a; the returned angle is in the range -pi/2 through pi/2.	realMatrix
atan (real a)	Returns the arc tangent of a value; the returned angle is in the range -pi/2 through $p i / 2$.	real
atan (integer a)	Returns the arc tangent of a value; the returned angle is in the range -pi/2 through $p i / 2$.	real
atan(realVector a)	Returns a vector whose elements are the arc tangents of	realVector


	the elements of the input vector a; the returned angle is in the range -pi/2 through pi/2.	
atan (realMatrix a)	Returns a matrix whose elements are the arc tangents of the elements of the input matrix a; the returned angle is in the range -pi/2 through $p i / 2$.	realMatrix
atan2 (integer y, integer x )	Returns the angle theta from the conversion of rectangular coordinates ( $\mathrm{x}, \mathrm{y}$ ) to polar coordinates ( r, theta).	real
atan2 (integer y, real x)	Returns the angle theta from the conversion of rectangular coordinates ( $\mathrm{x}, \mathrm{y}$ ) to polar coordinates ( r , theta).	real
atan2 (real y , integer x )	Returns the angle theta from the conversion of rectangular coordinates ( $\mathrm{x}, \mathrm{y}$ ) to polar coordinates ( r, theta).	real
atan2 (real y , real x )	Returns the angle theta from the conversion of rectangular coordinates ( $\mathrm{x}, \mathrm{y}$ ) to polar coordinates ( r, theta).	real
cbrt(integer a)	Returns the cube root of a integer value.	real
cbrt (real a)	Returns the cube root of a real value.	real
ceil (real a)	Returns the smallest (closest to negative infinity) real value that is greater than or equal to the argument and is equal to a mathematical integer.	real
copySign(real magnitude, real sign)	Returns the first floating-point argument with the sign of the second floating-point argument.	real
cos (real a)	Returns the trigonometric cosine of an angle.	real
cos (integer a)	Returns the trigonometric cosine of an angle.	real
cos (realVector a)	Returns a vector whose elements are the trigonometric cosines of the elements of the input vector a.	realVector
cos (realMatrix a)	Returns a matrix whose elements are the trigonometric cosines of the elements of the input matrix a.	realMatrix
cosh (integer x )	Returns the hyperbolic cosine of a integer value.	real
cosh (real x)	Returns the hyperbolic cosine of a real value.	real
cosh (realVector x)	Returns a vector whose elements are the hyperbolic cosines of the elements of the input vector $x$.	realVector
cosh (realMatrix x)	Returns a matrix whose elements are the hyperbolic cosines of the elements of the input matrix x.	realMatrix
exp (integer a)	Returns Euler's number $e$ raised to the power of a real value.	real
$\exp (r e a l ~ a) ~$	Returns Euler's number $e$ raised to the power of a real value.	real
expm1 (real x)	Returns $e^{x}-1$.	real
floor (real a)	Returns the largest (closest to positive infinity) real value that is less than or equal to the argument and is equal to a mathematical integer.	real
getExponent (real d)	Returns the unbiased exponent used in the representation of a real.	int
hypot(real x, real y)	Returns $\operatorname{sqrt}\left(x^{2}+y^{2}\right)$ without intermediate overflow or underflow.	real
IEEEremainder (integer f1,	Computes the remainder operation on two arguments as	real


integer f2)	prescribed by the IEEE 754 standard.	
IEEEremainder (integer f1, real f2)	Computes the remainder operation on two arguments as prescribed by the IEEE 754 standard.	real
```IEEEremainder(real f1, integer f2)```	Computes the remainder operation on two arguments as prescribed by the IEEE 754 standard.	real
```IEEEremainder(real f1, real f2)```	Computes the remainder operation on two arguments as prescribed by the IEEE 754 standard.	real
$\log ($ integer a)	Returns the natural logarithm (base $e$ ) of a integer value.	real
$\log (r e a l ~ a) ~$	Returns the natural logarithm (base e) of a real value.	real
log (realVector a)	Returns the natural logarithm (base $e$ ) of a realVector value.	realVector
$\log (r e a l M a t r i x ~ a) ~$	Returns the natural logarithm (base $e$ ) of a realMatrix value.	realMatrix
logb (integer a, integer b)	Returns the base b logarithm of a integer value.	real
logb (integer a, real b)	Returns the base b logarithm of a integer value.	real
logb (real a, integer b)	Returns the base b logarithm of a real value.	real
logb (real a, real b)	Returns the base b logarithm of a real value.	real
logb(realVector a, integer b)	Returns the base b logarithm of a realVector value.	realVector
logb (realVector a, real b)	Returns the base b logarithm of a realVector value.	realVector
logb(realMatrix a, integer b)	Returns the base b logarithm of a realMatrix value.	realMatrix
logb (realMatrix a, real b)	Returns the base b logarithm of a realmatrix value.	realMatrix
Log2 (integer a)	Returns the base 2 logarithm of a integer value.	real
$\log 2$ (real a)	Returns the base 2 logarithm of a real value.	real
log2 (realVector a)	Returns the base 2 logarithm of a realVector value.	realVector
$\log 2$ (realMatrix a)	Returns the base 2 logarithm of a realmatrix value.	realMatrix
log10 (integer a)	Returns the base 10 logarithm of a integer value.	real
$\log 10$ (real a)	Returns the base 10 logarithm of a real value.	real
log10 (realVector a)	Returns the base 10 logarithm of a realVector value.	realVector
log10 (realMatrix a)	Returns the base 10 logarithm of a realMatrix value.	realMatrix
$\log 1 \mathrm{p}(\mathrm{real}$ x)	Returns the natural logarithm of the sum of the argument and 1.	real
max (integer a , integer b)	Returns the greater of two integer values.	integer
max (integer a, real b)	Returns the greater of two values.	real
max (real a, integer b)	Returns the greater of two values.	real
max (real a, real b)	Returns the greater of two real values.	real


min (integer a, integer b)	Returns the smaller of two integer values.	integer
min (integer a, real b)	Returns the smaller of two values.	real
min (real a, integer b)	Returns the smaller of two values.	real
min (real a, real b)	Returns the smaller of two real values.	real
nextAfter (real start, real direction)	Returns the floating-point number adjacent to the first argument in the direction of the second argument.	real
nextUp (real d)	Returns the floating-point value adjacent to $d$ in the direction of positive infinity.	real
rint(real a)	Returns the real value that is closest in value to the argument and is equal to a mathematical integer.	real
round (real a)	Returns the closest integer to the argument, with ties rounding up.	integer
scalb(real d, int scaleFactor)	Return $\mathrm{d} \times 2^{\text {scaleFactor }}$ rounded as if performed by a single correctly rounded floating-point multiply to a member of the double value set.	real
signum(real d)	Returns the signum function of the argument; zero if the argument is zero, 1.0 if the argument is greater than zero, 1.0 if the argument is less than zero.	real
sin (real a)	Returns the trigonometric sine of an angle.	real
sin(integer a)	Returns the trigonometric sine of an angle.	real
sin(realVector a)	Returns a vector whose elements are the trigonometric sines of the elements of the input vector a.	realVector
sin (realMatrix a)	Returns a matrix whose elements are the trigonometric sines of the elements of the input matrix a.	realMatrix
sinh (integer x )	Returns the hyperbolic sine of a integer value.	real
sinh (real x)	Returns the hyperbolic sine of a real value.	real
sinh (realVector x )	Returns a vector whose elements are the hyperbolic sines of the elements of the input vector a.	realVector
sinh (realMatrix x)	Returns a matrix whose elements are the hyperbolic sines of the elements of the input matrix a.	realMatrix
sqrt(integer a)	Returns the correctly rounded positive square root of a integer value.	real
sqrt(real a)	Returns the correctly rounded positive square root of a real value.	real
tan (real a)	Returns the trigonometric tangent of an angle.	real
tan (integer a)	Returns the trigonometric tangent of an angle.	real
tan (realVector a)	Returns a vector whose elements are the trigonometric tangents of the elements of the input vector a.	realVector
tan (realMatrix a)	Returns a matrix whose elements are the trigonometric tangents of the elements of the input matrix a.	realMatrix
tanh (integer x )	Returns the hyperbolic tangent of a integer value.	real
tanh (real x)	Returns the hyperbolic tangent of a real value.	real
tanh (realVector $\mathbf{x}$ )	Returns a vector whose elements are the hyperbolic tangents of the elements of the input vector a.	realVector


tanh (real x)	Returns a matrix whose elements are the hyperbolic   tangents of the elements of the input matrix a.	realMatrix
toDegrees (integer angrad)	Converts an angle measured in radians to an   approximately equivalent angle measured in degrees.	real
toDegrees (real angrad)	Converts an angle measured in radians to an   approximately equivalent angle measured in degrees.	real
toRadians (integer angdeg)	Converts an angle measured in degrees to an   approximately equivalent angle measured in radians.	real
toRadians (real angdeg)	Converts an angle measured in degrees to an   approximately equivalent angle measured in radians.	real
ulp (real d)	Returns the size of an ulp of the argument.	real

## A.2.1 toRadians

## Signatures:

```
 toRadians(integer angdeg)
 toRadians(real angdeg)
```


## Description:

Converts an angle measured in degrees to an approximately equivalent angle measured in radians. The conversion from degrees to radians is generally inexact. Argument of type long converted to a double value.

## Parameters:

- angdeg - an angle, in degrees


## Returns:

- The measurement of the angle angdeg in radians. The return type is double.


## A.2.2 toDegrees

## Signature:

toDegrees (integer angrad)
toDegrees (real angrad)

## Description:

Converts an angle measured in radians to an approximately equivalent angle measured in degrees. The conversion from radians to degrees is generally inexact; users should not expect cos (toRadians (90.0)) to exactly equal 0.0. Argument of type long converted to a double value.

## Parameters:

- angrad - an angle, in radians


## Returns:

The measurement of the angle a
A.2.3 sin

Signatures:
sin(integer a)
sin (real a)
$\sin (r e a l V e c t o r ~ a)$
sin(realMatrix a)

## Description:

Returns the trigonometric sine of an angle.
Special cases:

- If the argument is NaN or an infinity, then the result is NaN .
- If the argument is zero, then the result is a zero with the same sign as the argument.

The computed result must be within 1 ulp of the exact result. Results must be semimonotonic. Argument of type long converted to a double value.

## Parameters:

- a - an angle, in radians for type long and double.
- a - a vector whose elements are angles, in radians for type vector.
- a - a matrix whose elements are angles, in radians for type matrix.
- The sine of the argument, for input type long or double.
- A vector whose elements are the sines of the elements of the vector argument, for the input type vector.
- A matrix whose elements are the sines of the elements of the matrix argument, for the input type matrix.
A.2.4 $\cos$

Signatures:
cos(integer a)
cos(real a)
cos(realVector a)
cos(realMatrix a)

## Description:

Returns the trigonometric cosine of an angle.
Special cases:

- If the argument is NaN or an infinity, then the result is NaN .

The computed result must be within 1 ulp of the exact result. Results must be semimonotonic. Argument of type long converted to a double value.

## Parameters:

- a - an angle, in radians for type long and double.
- a - a vector whose elements are angles, in radians for type vector.
- a - a matrix whose elements are angles, in radians for type matrix.


## Returns:

- The cosine of the argument, for input type long or double.
- A vector whose elements are the cosines of the elements of the vector argument, for the input type vector.
- A matrix whose elements are the cosines of the elements of the matrix argument, for the input type matrix.


## A.2.5 tan

Signatures:
tan(integer a)
tan (real a)
tan (realVector a)
tan (realMatrix a)

## Description:

Returns the trigonometric tangent of an angle.

Special cases:

- If the argument is NaN or an infinity, then the result is NaN .
- If the argument is zero, then the result is a zero with the same sign as the argument.

The computed result must be within 1 ulp of the exact result. Results must be semimonotonic. Argument of type long converted to a double value.

## Parameters:

- a - an angle, in radians for type long and double.
- a - a vector whose elements are angles, in radians for type vector.
- a - a matrix whose elements are angles, in radians for type matrix.


## Returns:

- The tangent of the argument, for input type long or double.
- A vector whose elements are the tangent of the elements of the vector argument, for the input type vector.
- A matrix whose elements are the tangent of the elements of the matrix argument, for the input type matrix.


## A.2.6 asin

## Signatures:

```
asin(integer a)
asin(real a)
asin(realVector a)
asin(realMatrix a)
```


## Description:

Returns the arc sine of a value; the returned angle is in the range -pi/2 through pi/2.

Special cases:

- If the argument is NaN or its absolute value is greater than 1 , then the result is NaN .
- If the argument is zero, then the result is a zero with the same sign as the argument.

The computed result must be within 1 ulp of the exact result. Results must be semimonotonic. Argument of type long converted to a double value.

## Parameters:

- a - the value whose arc sine is to be returned, for type long and double.
- a - a vector whose elements are the values whose arc sine is to be returned, for type vector.
- a-a matrix whose elements are the values whose arc sine is to be returned, for type matrix.


## Returns:

- The arc sine of the argument, for input type long or double.
- A vector whose elements are the arc sine of the elements of the vector argument, for the input type vector.
- A matrix whose elements are the arc sine of the elements of the matrix argument, for the input type matrix.
A.2.7 acos


## Signatures:

acos(integer a)
acos(real a)
acos(realVector a)
acos(realMatrix a)

## Description:

Returns the arc cosine of a value; the returned angle is in the range 0.0 through pi.

## Special case:

- If the argument is NaN or its absolute value is greater than 1 , then the result is NaN .

The computed result must be within 1 ulp of the exact result. Results must be semimonotonic. Argument of type long converted to a double value.

## Parameters:

- a - the value whose arc cosine is to be returned, for type long and double.
- a-a vector whose elements are the values whose arc cosine is to be returned, for type vector.
- a - a matrix whose elements are the values whose arc cosine is to be returned, for type matrix.

Returns:

- The arc cosine of the argument, for input type long or double.
- A vector whose elements are the arc cosine of the elements of the vector argument, for the input type vector.
- A matrix whose elements are the arc cosine of the elements of the matrix argument, for the input type matrix.


## A.2.8 atan

## Signatures:

atan(integer a)
atan(real a)
atan(realVector a)
atan(realMatrix a)

## Description:

Returns the arc tangent of a value; the returned angle is in the range $-p i / 2$ through $p i / 2$.
Special cases:

- If the argument is NaN , then the result is NaN .
- If the argument is zero, then the result is a zero with the same sign as the argument.

The computed result must be within 1 ulp of the exact result. Results must be semimonotonic. Argument of type long converted to a double value.

## Parameters:

- a - the value whose arc tangent is to be returned, for type long and double.
- a - a vector whose elements are the values whose arc tangent is to be returned, for type vector.
- a - a matrix whose elements are the values whose arc tangent is to be returned, for type matrix.


## Returns:

- The arc tangent of the argument, for input type long or double.
- A vector whose elements are the arc tangent of the elements of the vector argument, for the input type vector.
- A matrix whose elements are the arc tangent of the elements of the matrix argument, for the input type matrix.


## A.2.9 atan2

## Signatures:

atan2 (integer $y$, integer
x)
atan2 (integer $y$, real $x$ )
atan2 (real $y$, integer $x$ )
atan2 (real $y$, real $x$ )

## Description:

Returns the angle theta from the conversion of rectangular coordinates $(\mathrm{x}, \mathrm{y})$ to polar coordinates ( r , theta). This method computes the phase theta by computing an arc tangent of $y / x$ in the range of -pi to pi.

## Special cases:

- If either argument is NaN , then the result is NaN .
- If the first argument is positive zero and the second argument is positive, or the first argument is positive and finite and the second argument is positive infinity, then the result is positive zero.
- If the first argument is negative zero and the second argument is positive, or the first argument is negative and finite and the second argument is positive infinity, then the result is negative zero.
- If the first argument is positive zero and the second argument is negative, or the first argument is positive and finite and the second argument is negative infinity, then the result is the real value closest to $p i$.
- If the first argument is negative zero and the second argument is negative, or the first argument is negative and finite and the second argument is negative infinity, then the result is the real value closest to -pi.
- If the first argument is positive and the second argument is positive zero or negative zero, or the first argument is positive infinity and the second argument is finite, then the result is the real value closest to $p i / 2$.
- If the first argument is negative and the second argument is positive zero or negative zero, or the first argument is negative infinity and the second argument is finite, then the result is the real value closest to -pi/2.
- If both arguments are positive infinity, then the result is the real value closest to pi/4.
- If the first argument is positive infinity and the second argument is negative infinity, then the result is the real value closest to $3^{*} p i / 4$.
- If the first argument is negative infinity and the second argument is positive infinity, then the result is the real value closest to -pi/4.
- If both arguments are negative infinity, then the result is the real value closest to 3*pi/4.

The computed result must be within 2 ulps of the exact result. Results must be semi-monotonic. Arguments of type long converted to double values.

## Parameters:

- $y$ - the ordinate coordinate
- x - the abscissa coordinate


## Returns:

- the theta component of the point ( $r$, theta) in polar coordinates that corresponds to the point $(x, y)$ in Cartesian coordinates. The return type is double.


## A.2.10 $\sinh$

## Signatures:

```
sinh(integer x)
sinh(real x)
sinh(realVector x)
sinh(realMatrix x)
```

Description:

Returns the hyperbolic sine of a real value. The hyperbolic sine of $x$ is defined to be $\left(e^{x}-e^{-}\right.$ $\left.{ }^{x}\right) / 2$ where $e$ is Euler's number.

## Special cases:

- If the argument is NaN , then the result is NaN .
- If the argument is infinite, then the result is an infinity with the same sign as the argument.
- If the argument is zero, then the result is a zero with the same sign as the argument.

The computed result must be within 2.5 ulps of the exact result.

## Parameters:

- x - The number whose hyperbolic sine is to be returned for type long and double.
- x - a vector whose elements are the numbers whose hyperbolic sine is to be returned for type vector.
- $\quad \mathrm{x}$ - a matrix whose elements are the numbers whose hyperbolic sine is to be returned for type matrix.


## Returns:

- The hyperbolic sine of $x$, for input type long or double.
- A vector whose elements are the hyperbolic sine of $x$ of the elements of the vector argument, for the input type vector.
- A matrix whose elements are the hyperbolic sine of $x$ of the elements of the matrix argument, for the input type matrix.
A.2.11 cosh

Signatures:
cosh (integer x)
cosh (real x)
cosh (realVector $x$ )
cosh (realMatrix x)

## Description:

Returns the hyperbolic cosine of a real value. The hyperbolic cosine of $x$ is defined to be $\left(e^{x}+e^{-x}\right) / 2$ where $e$ is Euler's number.

## Special cases:

- If the argument is NaN , then the result is NaN .
- If the argument is infinite, then the result is positive infinity.
- If the argument is zero, then the result is 1.0 .

The computed result must be within 2.5 ulps of the exact result.

## Parameters:

- $\quad x$ - The number whose hyperbolic cosine is to be returned for type long and double.
- $\mathrm{x}-\mathrm{a}$ vector whose elements are the numbers whose hyperbolic cosine is to be returned for type vector.
- $x$ - a matrix whose elements are the numbers whose hyperbolic cosine is to be returned for type matrix.


## Returns:

- The hyperbolic cosine of $x$, for input type long or double.
- A vector whose elements are the hyperbolic cosine of $x$ of the elements of the vector argument, for the input type vector.
- A matrix whose elements are the hyperbolic cosine of $x$ of the elements of the matrix argument, for the input type matrix.


## A.2.12 tanh

## Signatures:

tanh(integer $x$ )
tanh (real x)
tanh (realVector $\mathbf{x}$ )
tanh (realMatrix x)

## Description:

Returns the hyperbolic tangent of a real value. The hyperbolic tangent of $x$ is defined to be $\left(e^{x}-e^{-x}\right) /\left(e^{x}+e^{-x}\right)$, in other words, $\sinh (x) / \cosh (x)$. Note that the absolute value of the exact $\tanh$ is always less than 1 .

## Special cases:

- If the argument is NaN , then the result is NaN .
- If the argument is zero, then the result is a zero with the same sign as the argument.
- If the argument is positive infinity, then the result is +1.0 .
- If the argument is negative infinity, then the result is -1.0 .

The computed result must be within 2.5 ulps of the exact result. The result of tanh for any finite input must have an absolute value less than or equal to 1 . Note that once the exact result of $\tanh$ is within $1 / 2$ of an ulp of the limit value of $\pm 1$, correctly signed $\pm 1.0$ should be returned.

## Parameters:

- x - The number whose hyperbolic tangent is to be returned for type long and double.
- x - a vector whose elements are the numbers whose hyperbolic tangent is to be returned for type vector.
- $x$ - a matrix whose elements are the numbers whose hyperbolic tangent is to be returned for type matrix.


## Returns:

- The hyperbolic tangent of $x$, for input type long or double.
- A vector whose elements are the hyperbolic tangent of $x$ of the elements of the vector argument, for the input type vector.
- A matrix whose elements are the hyperbolic tangent of x of the elements of the matrix argument, for the input type matrix.
- ngrad in degrees. The return type is double.
A.2.13
exp


## Signatures:

```
\(\exp\) (integer a)
```

$\exp$ (real a)

## Description:

Returns Euler's number $e$ raised to the power of a real value.
Special cases:

- If the argument is NaN , the result is NaN .
- If the argument is positive infinity, then the result is positive infinity.
- If the argument is negative infinity, then the result is positive zero.

The computed result must be within 1 ulp of the exact result. Results must be semimonotonic. Argument of type long converted to a double value.

## Parameters:

- a - the exponent to raise $e$ to.


## Returns:

- The value $e^{\text {a }}$, where $e$ is the base of the natural logarithms. The return type is double.


## A.2.14 $\quad \log$

## Signatures:

$\log ($ integer a)
log(real a)
$\log (r e a l V e c t o r ~ a)$
$\log (r e a l M a t r i x ~ a)$

## Description:

Returns the natural logarithm (base $e$ ) of a long, double, vector, or matrix value.

Special cases:

- If the argument is NaN or less than zero, then the result is NaN .
- If the argument is positive infinity, then the result is positive infinity.
- If the argument is positive zero or negative zero, then the result is negative infinity.

The computed result must be within 1 ulp of the exact result. Results must be semimonotonic. Argument of type long converted to a double value.

## Parameters:

- a-a value


## Returns:

- the value $\ln a$, the natural logarithm of $a$. The return type is double, vector, or matrix.


## A.2.15

$\log b$
Signatures:

```
logb(integer a, integer b)
logb(integer a, real b)
logb(real a, integer b)
logb(real a, real b)
logb(realVector a, integer b)
logb(realVector a, real b)
logb(realMatrix a, integer b)
logb(realMatrix a, real b)
```


## Description:

Returns the base b logarithm of a long, double, vector, or matrix value.

Special cases:

- If the argument is NaN or less than zero, then the result is NaN .
- If the argument is positive infinity, then the result is positive infinity.
- If the argument is positive zero or negative zero, then the result is negative infinity.
- If the argument is equal to $10^{n}$ for integer $n$, then the result is $n$.

The computed result must be within 1 ulp of the exact result. Results must be semimonotonic. Argument of type long converted to a double value.

## Parameters:

- a-a value


## Returns:

- the base b logarithm of a . The return type is double, vector, or matrix.


## A.2.16 $\log 2$

## Signatures:

```
log2 (integer a)
log2 (real a)
log2 (realVector a)
log2 (realMatrix a)
```


## Description:

Returns the base 10 logarithm of a long, double, vector, or matrix value.

## Special cases:

- If the argument is NaN or less than zero, then the result is NaN .
- If the argument is positive infinity, then the result is positive infinity.
- If the argument is positive zero or negative zero, then the result is negative infinity.
- If the argument is equal to $10^{n}$ for integer $n$, then the result is $n$.

The computed result must be within 1 ulp of the exact result. Results must be semimonotonic. Argument of type long converted to a double value.

## Parameters:

- a-a value

Returns:

- the base 2 logarithm of a. The return type is double, vector, or matrix.


## A.2.17 $\log 10$

## Signatures:

log10 (integer a)
log10 (real a)
log10 (realVector a)
log10 (realMatrix a)

## Description:

Returns the base 10 logarithm of a real value.

## Special cases:

- If the argument is NaN or less than zero, then the result is NaN .
- If the argument is positive infinity, then the result is positive infinity.
- If the argument is positive zero or negative zero, then the result is negative infinity.
- If the argument is equal to $10^{n}$ for integer $n$, then the result is $n$.

The computed result must be within 1 ulp of the exact result. Results must be semimonotonic. Argument of type long converted to a double value.

## Parameters:

- a-a value

Returns:

- the base 10 logarithm of a. The return type is double, vector, or matrix.


## A.2.18 <br> sqrt

Signature:
sqrt(integer a)
sqrt(real a)

## Description:

Returns the correctly rounded positive square root of a real value.
Special cases:

- If the argument is NaN or less than zero, then the result is NaN .
- If the argument is positive infinity, then the result is positive infinity.
- If the argument is positive zero or negative zero, then the result is the same as the argument.

Otherwise, the result is the real value closest to the true mathematical square root of the argument value. Argument of type long converted to a double value.

## Parameters:

- a-a value.


## Returns:

- the positive square root of a. If the argument is NaN or less than zero, the result is NaN . The return type is double.


## A.2.19 cbrt

Signature:

```
cbrt(integer
a)
cbrt(real a)
```


## Description:

Returns the cube root of a real value. For positive finite $\mathrm{x}, \operatorname{cbrt}(-\mathrm{x})=-\mathrm{cbrt}(\mathrm{x})$; that is, the cube root of a negative value is the negative of the cube root of that value's magnitude.

Special cases:

- If the argument is NaN , then the result is NaN .
- If the argument is infinite, then the result is an infinity with the same sign as the argument.
- If the argument is zero, then the result is a zero with the same sign as the argument.

The computed result must be within 1 ulp of the exact result. Argument of type long converted to a double value.

## Parameters:

- a-a value.


## Returns:

- the cube root of a. The return type is double.


## A.2.20 IEEEremainder

Signature:

```
IEEEremainder(integer f1, integer f2)
IEEEremainder(integer f1, real f2)
IEEEremainder(real f1, integer f2)
IEEEremainder(real f1, real f2)
```


## Description:

Computes the remainder operation on two arguments as prescribed by the IEEE 754
standard. The remainder value is mathematically equal to $f 1-f 2 \times n$, where $n$ is the mathematical integer closest to the exact mathematical value of the quotient $\mathrm{f1} / \mathrm{f} 2$, and if two mathematical integers are equally close to $£ 1 / £ 2$, then $n$ is the integer that is even. If the remainder is zero, its sign is the same as the sign of the first argument.

Special cases:

- If either argument is NaN , or the first argument is infinite, or the second argument is positive zero or negative zero, then the result is NaN .
- If the first argument is finite and the second argument is infinite, then the result is the same as the first argument.

Arguments of type long converted to double values.

## Parameters:

- f 1 - the dividend.
- $\quad \mathrm{f} 2$ - the divisor.


## Returns:

- the remainder when $f 1$ is divided by $£ 2$. The return type is double.


## A.2.21 ceil

Signature:
ceil(real a)
Description:
Returns the smallest (closest to negative infinity) double value that is greater than or equal to the argument and is equal to a mathematical integer.

Special cases:

- If the argument value is already equal to a mathematical integer, then the result is the same as the argument.
- If the argument is NaN or an infinity or positive zero or negative zero, then the result is the same as the argument.
- If the argument value is less than zero but greater than -1.0 , then the result is negative zero.

Note that the value of ceil ( x ) is exactly the value of $-\mathrm{floor}(-\mathrm{x})$.

## Parameters:

- a-a value.
- the smallest (closest to negative infinity) floating-point value that is greater than or equal to the argument and is equal to a mathematical integer.
A.2.22 floor

Signature:
floor (real a)

## Description:

Returns the largest (closest to positive infinity) real value that is less than or equal to the argument and is equal to a mathematical integer.

## Special cases:

- If the argument value is already equal to a mathematical integer, then the result is the same as the argument.
- If the argument is NaN or an infinity or positive zero or negative zero, then the result is the same as the argument.


## Parameters:

- a-a value.


## Returns:

- the largest (closest to positive infinity) floating-point value that less than or equal to the argument and is equal to a mathematical integer.


## A.2.23 rint

## Signature:

rint(real a)

## Description:

Returns the real value that is closest in value to the argument and is equal to a mathematical integer. If two real values that are mathematical integers are equally close, the result is the integer value that is even.

## Special cases:

- If the argument value is already equal to a mathematical integer, then the result is the same as the argument.
- If the argument is NaN or an infinity or positive zero or negative zero, then the result is the same as the argument.

Parameters:

- a-a real value.


## Returns:

- the closest floating-point value to a that is equal to a mathematical integer.


## A.2.24 round

## Signature:

round (real a)

## Description:

Returns the closest integer to the argument, with ties rounding up.

Special cases:

- If the argument is NaN , the result is 0 .
- If the argument is negative infinity or any value less than or equal to the value of the minimum long value, the result is equal to the value of the minimum long value.
- If the argument is positive infinity or any value greater than or equal to the value of the maximum long value, the result is equal to the value of the maximum long value.


## Parameters:

- a-a floating-point value to be rounded to a integer.


## Returns:

- the value of the argument rounded to the nearest integer value.


## A.2.25 abs

Signature:

```
abs (integer
a)
abs (real a)
abs (realVector a)
abs (realMatrix a)
```


## Description:

Returns the absolute value of the argument. If the argument is not negative, the argument is returned. If the argument is negative, the negation of the argument is returned.

## Special cases:

- If the argument is positive zero or negative zero, the result is positive zero.
- If the argument is infinite, the result is positive infinity.
- If the argument is NaN , the result is NaN .


## Parameters:

- a - the argument whose absolute value is to be determined for type long and double.
- a - a vector whose elements are the values whose absolute values is to be determined for type vector.
- a - a matrix whose elements are the values whose absolute values is to be determined for type matrix.


## Returns

- The absolute value of the argument, for input type long or double.
- A vector whose elements are the absolute value of the elements of the vector argument, for the input type vector.
- A matrix whose elements are the absolute value of the elements of the matrix argument, for the input type matrix.


## A.2.26 max

## Signature:

```
max(integer a, integer b)
max(integer a, real b)
max(real a, integer b)
```

```
max(real a, real b)
```


## Description:

Returns the greater of two values. That is, the result is the argument closer to positive infinity. If the arguments have the same value, the result is that same value. If either value is NaN , then the result is NaN. Unlike the numerical comparison operators, this method considers negative zero to be strictly smaller than positive zero. If one argument is positive zero and the other negative zero, the result is positive zero.

## Parameters:

- a-an argument.
- b-another argument.


## Returns:

- the larger of $a$ and $b$. The return type is long if both arguments are of long type. Otherwise, the return type is double.


## A.2.27 min

## Signature:

```
min(integer a, integer b)
min(integer a, real b)
min(real a, integer b)
min(real a, real b)
```


## Description:

Returns the smaller of two values. That is, the result is the value closer to negative infinity. If the arguments have the same value, the result is that same value. If either value is NaN , then the result is NaN. Unlike the numerical comparison operators, this method considers negative zero to be strictly smaller than positive zero. If one argument is positive zero and the other is negative zero, the result is negative zero.

## Parameters:

- a - an argument.
- b-another argument.


## Returns:

- the smaller of $a$ and $b$. The return type is long if both arguments are of long type. Otherwise, the return type is double.


## A.2.28 ulp

Signature:
ulp (real d)
Description:
Returns the size of an ulp of the argument. An ulp of a real value is the positive distance between this floating-point value and the real value next larger in magnitude. Note that for non-NaN $x$, ulp $(-x)==\operatorname{ulp}(x)$.

Special Cases:

- If the argument is NaN , then the result is NaN .
- If the argument is positive or negative infinity, then the result is positive infinity.
- If the argument is positive or negative zero, then the result is the minimum double value.
- If the argument is $\pm$ (the maximum double value), then the result is equal to $2^{971}$.


## Parameters:

- $d$ - the floating-point value whose ulp is to be returned

Returns:

- the size of an ulp of the argument


## A.2.29 signum

## Signature:

signum(real d)

## Description:

Returns the signum function of the argument; zero if the argument is zero, 1.0 if the argument is greater than zero, -1.0 if the argument is less than zero.

## Special Cases:

- If the argument is NaN , then the result is NaN .
- If the argument is positive zero or negative zero, then the result is the same as the argument.


## Parameters:

- $d$ - the floating-point value whose signum is to be returned


## Returns:

- the signum function of the argument


## A.2.30 hypot

Signature:
hypot(real x, real y)

## Description:

Returns $\operatorname{sqrt}\left(x^{2}+y^{2}\right)$ without intermediate overflow or underflow.
Special cases:

- If either argument is infinite, then the result is positive infinity.
- If either argument is NaN and neither argument is infinite, then the result is NaN .

The computed result must be within 1 ulp of the exact result. If one parameter is held constant, the results must be semi-monotonic in the other parameter.

## Parameters:

- $x$-a value
- $y$-a value


## Returns:

- $\operatorname{sqrt}\left(x^{2}+y^{2}\right)$ without intermediate overflow or underflow


## A.2.31 expm1

Signature:
expm1 (real x)

## Description:

Returns $e^{\mathrm{x}}-1$. Note that for values of $x$ near 0 , the exact sum of expm1 (x) +1 is much closer to the true result of $e^{\mathrm{x}}$ than $\exp (\mathrm{x})$.

Special cases:

- If the argument is NaN , the result is NaN .
- If the argument is positive infinity, then the result is positive infinity.
- If the argument is negative infinity, then the result is -1.0 .
- If the argument is zero, then the result is a zero with the same sign as the argument.

The computed result must be within 1 ulp of the exact result. Results must be semimonotonic. The result of expm1 for any finite input must be greater than or equal to -1.0.
Note that once the exact result of $e^{x}-1$ is within $1 / 2$ ulp of the limit value $-1,-1.0$ should be returned.

## Parameters:

- $\quad \mathrm{x}$ - the exponent to raise $e$ to in the computation of $e^{\mathrm{x}}-1$.


## Returns:

- the value $e^{x}-1$.
A.2.32 $\quad \log 1 p$
$\log 1 p($ real $x)$


## Description:

Returns the natural logarithm of the sum of the argument and 1 . Note that for small values $x$, the result of $\log 1 p(x)$ is much closer to the true result of $\ln (1+x)$ than the floating-point evaluation of $\log (1.0+x)$.

## Special cases:

- If the argument is NaN or less than -1 , then the result is NaN .
- If the argument is positive infinity, then the result is positive infinity.
- If the argument is negative one, then the result is negative infinity.
- If the argument is zero, then the result is a zero with the same sign as the argument.

The computed result must be within 1 ulp of the exact result. Results must be semimonotonic.

## Parameters:

- $x$-a value


## Returns:

- the value $\ln (x+1)$, the natural $\log$ of $x+1$


## A.2.33 copySign

Signature:
copySign(real magnitude, real sign)

## Description:

Returns the first floating-point argument with the sign of the second floating-point argument.
Note that unlike the StrictMath.copySign method, this method does not require NaN sign arguments to be treated as positive values; implementations are permitted to treat some NaN arguments as positive and other NaN arguments as negative to allow greater performance.

## Parameters:

- magnitude - the parameter providing the magnitude of the result
- sign - the parameter providing the sign of the result


## Returns:

- a value with the magnitude of magnitude and the sign of sign.


## A.2.34 getExponent

getExponent(real d)

## Description:

Returns the unbiased exponent used in the representation of a real. Special cases:

- If the argument is NaN or infinite, then the result is Real. MAX EXPONENT +1 .
- If the argument is zero or subnormal, then the result is Double.MIN EXPONENT -1 .


## Parameters:

- d-a real value


## Returns:

- the unbiased exponent of the argument


## A.2.35 nextAfter

## Signature:

nextAfter (real start, real direction)

## Description:

Returns the floating-point number adjacent to the first argument in the direction of the second argument. If both arguments compare as equal the second argument is returned.

## Special cases:

- If either argument is a NaN , then NaN is returned.
- If both arguments are signed zeros, direction is returned unchanged (as implied by the requirement of returning the second argument if the arguments compare as equal).
- If start is $\pm$ (minimum double value) and direction has a value such that the result should have a smaller magnitude, then a zero with the same sign as start is returned.
- If start is infinite and direction has a value such that the result should have a smaller magnitude, the maximum double value with the same sign as start is returned.
- If start is equal to $\pm$ (the maximum long value) and direction has a value such that the result should have a larger magnitude, an infinity with same sign as start is returned.


## Parameters:

- start - starting floating-point value
- direction - value indicating which of start's neighbors or start should be returned


## Returns:

- The floating-point number adjacent to start in the direction of direction.


## A.2.36 nextUp

## Signature:

nextUp (real d)

## Description:

Returns the floating-point value adjacent to d in the direction of positive infinity.

Special Cases:

- If the argument is NaN , the result is NaN .
- If the argument is positive infinity, the result is positive infinity.
- If the argument is zero, the result is the minimum double value


## Parameters:

- d-starting floating-point value


## Returns:

- The adjacent floating-point value closer to positive infinity.


## A.2.37 scalb

Signature:
scalb(real d, int scaleFactor)

## Description:

Return $\mathrm{d} \times 2^{\text {scalefactor }}$ rounded as if performed by a single correctly rounded floating-point multiply to a member of the double value set. See the Java Language Specification for a discussion of floating-point value sets.

Special cases:

- If the first argument is $\mathrm{NaN}, \mathrm{NaN}$ is returned.
- If the first argument is infinite, then an infinity of the same sign is returned.
- If the first argument is zero, then a zero of the same sign is returned.


## Parameters:

- d - number to be scaled by a power of two.
- scaleFactor - power of 2 used to scale $d$

Returns:

- $\mathrm{d} \times 2^{\text {scalefactor }}$


## Appendix B -- Library: Math2

## B. 1 Classes

Class Name	
Math2	library.Math2

## B. 2 Functions

Call Signature	Description	Return Type
diagonal (integer size, real value)	Returns a diagonal real matrix of size size $x$ size and the elements of the diagonal set to the values of the parameter value.	realMatrix
diagonal(real size, real value)	Returns a diagonal real matrix of size size $x$ size and the elements of the diagonal set to the values of the parameter value.	realMatrix
diagonal (real size, integer value)	Returns a diagonal real matrix of size size $x$ size and the elements of the diagonal set to the values of the parameter value.	realMatrix
diagonal(real size, real value)	Returns a diagonal real matrix of size size $x$ size and the elements of the diagonal set to the values of the parameter value.	realMatrix
divElemByElem(realVector left, realVector right)	Returns a real vector whose elements are ratios of the corresponding elements of the parameters left and right.	realVector
divElemByElem(realMatrix left, realMatrix right)	Returns a real matrix whose elements are ratios of the corresponding elements of the parameters left and right.	realMatrix
identity (integer size)	Returns a diagonal real matrix of size size $x$ size and the elements of the diagonal set to 1.0.	realMatrix
identity(real size)	Returns a diagonal real matrix of size size X size and the elements of the diagonal set to 1.0.	realMatrix
multElemByElem (realVector left, realVector right)	Returns a real vector whose elements are products of the corresponding elements of the parameters left and right.	realVector
multElemByElem (realMatrix left, realMatrix right)	Returns a real matrix whose elements are products of the corresponding elements of the parameters left and right.	realMatrix
ones (integer length)	Returns a real vector of length length and all the elements set to 1.0.	realVector
ones (real length)	Returns a real vector of length length and all the elements set to 1.0 .	realVector


```ones(integer row, integer col)```	Returns a real matrix of size row xcol and all the elements set to 1.0 .	realMatrix
ones (real row, integer col)	Returns a real matrix of size row xcol and all the elements set to 1.0 .	realMatrix
ones (integer row, real col)	Returns a real matrix of size row xcol and all the elements set to 1.0 .	realMatrix
ones (real row, real col)	Returns a real matrix of size row x col and all the elements set to 1.0 .	realMatrix
transpose (realMatrix a)	Returns transpose of a.	realMatrix
zeros(integer length)	Returns a real vector of length length and all the elements set to 0.0 .	realVector
zeros(real length)	Returns a real vector of length length and all the elements set to 0.0.	realVector
```zeros(integer row, integer col)```	Returns a real matrix of size row x col and all the elements set to 0.0 .	realMatrix
zeros(real row, integer col)	Returns a real matrix of size row $x$ col and all the elements set to 0.0 .	realMatrix
zeros(integer row, real col)	Returns a real matrix of size row xcol and all the elements set to 0.0 .	realMatrix
zeros (real row, real col)	Returns a real matrix of size row x col and all the elements set to 0.0 .	realMatrix

## Appendix C -- Library: Linear Algebra

The Linear Algebra library composed of six classes: All, Utility, Linear Equations class, Linear Least Square class, Singular Value class, and Eigen class.

## C. 1 Classes

The table below lists the classes and their paths.

Class Name	Class Path
All	library.linear_algebra.All
Linear Equations	library.linear_algebra.LinearEquations
Linear Least Square	library.linear_algebra.LinearLeastSquare
Eigen	library.linear_algebra.Eigen
Singular Value	library.linear_algebra.SingularValue

## C. 2 Functions

The table below lists in alphabetical order the functions in the Utility class.

Call Signature	Description	Return Type
arrayToVec (array ar, boolean   real, boolean imag, boolean   comp)	Returns a real or complex vector produced   from the array input ar. The boolean   parameters real, imag and comp   indicates if the input ar contains real,   imaginary or complex elements.	realVector   or   complexVector
arrayToMat (array ar, boolean   real, boolean comp)	Returns a real or complex matrix produced   from the array input ar. The boolean   parameters real and comp indicates if the   input ar contains real or complex elements.	romplexMatrix
orealMatrix		
diagonal (integer size, real   value)	Returns a diagonal real matrix of size size $x$   size and the elements of the diagonal set to   the values of the parameter value.	realMatrix
diagonal (real size, real   value)	Returns a diagonal real matrix of size size $x$   size and the elements of the diagonal set to   the values of the parameter value.	realMatrix


left, realMatrix right)	products of the corresponding elements of the parameters left and right.	
ones (integer length)	Returns a real vector of length length and all the elements set to 1.0.	realVector
ones (real length)	Returns a real vector of length length and all the elements set to 1.0.	realVector
```ones(integer row, integer col)```	Returns a real matrix of size row xcol and all the elements set to 1.0.	realMatrix
ones (real row, integer col)	Returns a real matrix of size row x col and all the elements set to 1.0 .	realMatrix
ones (integer row, real col)	Returns a real matrix of size row x col and all the elements set to 1.0 .	realMatrix
ones (real row, real col)	Returns a real matrix of size row x col and all the elements set to 1.0 .	realMatrix
transpose (realMatrix a)	Returns transpose of a.	realMatrix
zeros (integer length)	Returns a real vector of length length and all the elements set to 0.0.	realVector
zeros (real length)	Returns a real vector of length length and all the elements set to 0.0.	realVector
```zeros(integer row, integer col)```	Returns a real matrix of size row x col and all the elements set to 0.0 .	realMatrix
zeros(real row, integer col)	Returns a real matrix of size row x col and all the elements set to 0.0.	realMatrix
zeros(integer row, real col)	Returns a real matrix of size row xcol and all the elements set to 0.0 .	realMatrix
zeros(real row, real col)	Returns a real matrix of size row xcol and all the elements set to 0.0 .	realMatrix

The table below lists in alphabetical order the functions in the Linear Equations class.

Call Signature	Description   Teturn	
decomposeLUP (realMatrix A)	Decomposes matrix A using LUP factorization.	void
determinant ()	Returns determinant of a matrix if the matrix is   already been LUP factorized.	real
determinant (realMatrix A)	Returns determinant after LUP factorizing matrix   A.	real
inverse ()	Returns inverse of a matrix if the matrix is   already been LUP factorized.	realMatrix
inverse (realMatrix A)	Returns inverse after LUP factorizing matrix A.	realMatrix
lower()	Returns the lower triangular matrix if the matrix   is already been LUP factorized.	realMatrix
lup ()	Returns the lower triangular matrix, the upper   triangular matrix, and the permutation matrix if	array


	the matrix is already been LUP factorized.	
lup (realMatrix A)	Returns the lower triangular matrix, the upper   triangular matrix, and the permutation matrix   after LUP factorizing matrix A.	array
permutation ()	Returns the permutation matrix if the matrix is   already been LUP factorized.	realMatrix
solve (realMatrix A,   realVector b)	Returns the solution vector x of the equation Ax   =b after LUP factorizing matrix A.	realVector
solve (realMatrix A,   realMatrix B)	Returns the solution matrix $X$ of the equation $A X$   $=\mathbf{B}$ after LUP factorizing matrix A.	realMatrix
solve (realVector b)	Returns the solution vector x of the equation Ax   $=\mathbf{b}$ if the matrix is already been LUP factorized.	realVector
solve (realMatrix B)	Returns the solution matrix $X$ of the equation $A X$   $=\mathbf{B}$ if the matrix is already been LUP factorized.	realMatrix
trace ()	Returns trace of a matrix if the matrix is already   been LUP factorized.	real
trace (realMatrix mat)	Returns trace of a matrix after LUP factorizing   matrix A..	real
upper ()	Returns the upper triangular matrix if the matrix   is already been LUP factorized.	realMatrix

The table below lists in alphabetical order the functions in the Linear Least Square class.

Call Signature	Description	Return Type
decomposeQR(realMatrix A)	Decomposes matrix A using QR factorization.	void
inverseLS()	Returns inverse of a matrix if the matrix is already been QR factorized.	realMatrix
getAid()	Returns the diagonal elements of the upper triangular matrix produced during factorization.	realVector
getP()	Returns P matrix.	realMatrix
getQ ()	Returns Q matrix.	realMatrix
getE ()	Returns R matrix.	realMatrix
getMaxEuclidNorm()	Returns the maximum of the Euclidean norms of the columns of the given matrix.	real
getTolerance ()	Returns the relative tolerance used for calculating diagonal elements of the upper triangular matrix.	real
inverseLS (realMatrix A)	Returns inverse after QR factorizing matrix A.	realMatrix
solveLS (realVector b)	Returns the solution vector x of the equation $\mathbf{A x}=\mathbf{b}$ if the matrix is already been QR factorized.	realVector
setTolerance (real tolerance)		void
```solveLS(realMatrix A, realVector b)```	Returns the solution vector x of the equation $\mathbf{A x}=\mathbf{b}$ after QR factorizing matrix $A$.	realVector


solveLS (realMatrix A, integer $n, ~ r e a l V e c t o r ~ b) ~$	Returns the solution vector x of the equation Ax $=\mathbf{b}$ after QR factorizing matrix A with the orthogonal matrix Q of order n.	realVector
$q r()$	Returns orthogonal matrices $Q R$ of a matrix if the matrix is already been $Q R$ factorized.	array
$q r($ realMatrix A)	Returns orthogonal matrices Q, R after factorizing matrix A.	array
$q r E($ realMatrix A)	Returns orthogonal matrices Q, R after producing an "economy-size" decomposition matrix A.	array

The table below lists in alphabetical order the functions in the Eigen class.

Call Signature	Description	Return Type
eigen(realMatrix A)	Returns real or complex eigen values and corresponding real or complex eigen vectors of a real $n x n$ matrix A.	$\begin{gathered} \text { array } \\ \text { (of realMatrix } \\ \text { or } \\ \text { complexMatrix) } \end{gathered}$
eigen(complexMatrix A)	Returns real or complex eigen values and corresponding real or complex eigen vectors of a complex $n x n$ matrix A.	```corray ```
eigenValue()	Returns real or complex eigen values which already been computed by calling the function eigen (matrix A) or eigen (complexMatrix A).	realMatrix or complexMatrix
eigenReal_vector()	Returns real or complex eigen vectors which already been computed by calling the function eigen (matrix A) or eigen (complexMatrix A).	```realMatrix or complexMatrix```

The table below lists in alphabetical order the functions for the Singular Value class.

Call Signature	Description	Return Type
decomposeSVD (realMatrix A)	Decomposes real matrix A using SVD factorization.	void
decomposeSVD (complexMatrix A)	Decomposes complex matrix A using SVD factorization.	void
getMinNonNegSingularValue ()	Returns the minimum non-negative singular value.	real
getU()	Returns an $m \times m$ real or complex unitary matrix U.	realMatrix or complexMatrix
getS ()	Returns an $m \times n$ rectangular diagonal matrix S with non-negative real numbers	realMatrix or

	on the diagonal.	complexMatrix
getV ()	Returns an $\mathrm{n} \times \mathrm{n}$ real or complex unitary matrix	$\begin{gathered} \text { realMatrix } \\ \text { or } \\ \text { complexMatrix } \end{gathered}$
pseudoinverse()	Returns a pseudo inverse of a real matrix if the matrix is already been SVD factorized.	realMatrix
pseudoinverse (realMatrix A)	Returns a pseudo inverse of a real matrix after SVD factorizing matrix A.	realMatrix
rank ()	Returns the rank of a matrix if the matrix is already been SVD factorized.	integer
rank (realMatrix A)	Returns the rank of a real matrix after SVD factorizing matrix A.	integer
rank (complexMatrix A)	Returns the rank of a complex matrix after SVD factorizing matrix A.	integer
setMinNonNegSingularValue (real value)	Sets the minimum non-negative singular value.	void
solvesvd (realVector b)	Returns the solution vector x of the equation $\mathbf{A x}=\mathbf{b}$ if the matrix is already been SVD factorized.	realVector
solvesvd(realMatrix A, realvector b)	Returns the solution vector x of the equation $\mathbf{A x}=\mathbf{b}$ after SVD factorizing matrix A.	realVector
svd ()	Returns an orthogonal $\mathrm{m} \times \mathrm{m}$ real or complex unitary matrix U , an $\mathrm{m} \times \mathrm{n}$ rectangular diagonal matrix S with nonnegative real numbers on the diagonal, and an orthogonal $\mathrm{n} \times \mathrm{m}$ real or complex unitary matrix V of a matrix if the matrix is already been SVD factorized.	array (of realMatrix or complexMatrix)
svd(realMatrix A)	Returns an orthogonal $\mathrm{m} \times \mathrm{m}$ real matrix U , an $\mathrm{m} \times \mathrm{n}$ rectangular diagonal matrix S with non-negative real numbers on the diagonal, and an orthogonal $\mathrm{n} \times \mathrm{m}$ real matrix V of a real matrix A after SVD factorizing matrix A .	array (of realMatrix or complexMatrix)
svd (complexMatrix A)	Returns an orthogonal $\mathrm{m} \times \mathrm{m}$ complex unitary matrix U , diagonal matrix S , and an orthogonal $n \times m$ real or complex unitary matrix V of a complex matrix A after SVD factorizing matrix A.	$\left\lvert\, \begin{gathered} \text { array } \\ \text { (of realMatrix } \\ \text { or } \\ \text { complexMatrix) } \end{gathered}\right.$

Appendix D -- Library: Zero Min Max

The Zero Min Max library contains two classes: RootFinder and Optimization.

D. 1 Classes

The table below lists the classes and their paths.

Class Name	Class Path
All	library.zero_min_max_eval.All
RootFinder	library.zero_min_max. RootFinder
Optimizer	library.zero_min_max_eval.Optimizer

D. 2 Functions

The table below lists in alphabetical order the functions in the Root Finder class.

Call Signature	Description	Return Type
bisection(String fonName, real $x 1$, real $x 2$, real prec, int maxItarations)	Returns zero crossing of a function using the Bisection method. Terminates when maxItarations reached.	real
bisection(String fonName, real $x 1$, real $x 2$)	Returns zero crossing of a function using the Bisection method.	real
bisection(String fonName, real $x 1$, real $x 2$, real prec)	Returns zero crossing of a function using the Bisection method.	real
bisection(real x1, real $\times 2$)	Returns zero crossing of a function using Bisection method. Valid after setting root finding method to Bisection.	real
bisection(real $x 1$, real $\times 2$, real prec)	Returns zero crossing of a function using Bisection method. Valid after setting root finding method to Bisection.	real
getIterations()	Return number of iterations used to find root.	integer
getMaxIterations()	Return the maximum number of iterations will be used to find root.	integer
getPrecision()	Returns relative precision used to determine convergence.	real
newton(String fonName, real start, real prec)	Returns zero crossing of a function using the Newton method.	real
```newton(String fonName, real start, real prec, int maxItarations)```	Returns zero crossing of a function using the Newton method. Terminates when maxItarations reached.	real
```newton(String fcnName, real start)```	Returns zero crossing of a function using the Newton method.	real


newton (real start)	Returns zero crossing of a function using the Newton method. Valid after setting root finding method to Newton.	real
newton (real start, real prec)	Returns zero crossing of a function using the Newton method. Valid after setting root finding method to Newton.	real
roots (HYP_PolynomialValue poly)	Returns roots of a polynomial.	realVector or
setMaxIterations (integer maxItarations)	Sets the maximum number of iterations to be used.	void
setPrecision (real prec)	Sets the relative precision to be used.	void
setFunction (String fcnName)	Sets the function who's roots will searched.	void
setBisection (String fcnName)	Sets the method to be Bisection for a new function.	void
setBisection ()	Sets the method to be Bisection for an existing function.	void
setNewton (String fcnName)	Sets the method to be Newton for a new function.	void
newton (real start)	Sets the method to be Newton for an existing function.	void

The table below lists in alphabetical order the functions in the Optimization class.

Call Signature	Description	Return Type
optimize()	Performs optimization.	realVector
powell(String fcnName, realVector guess)	Sets the function to be optimized, sets the initial guess values and performs optimization using hill climbing method.	realVector
powell(String fcnName, realVector guess, integer maxIter)	Sets the function to be optimized, sets the initial guess values and performs optimization using hill climbing method. Terminates when maxIter reached.	realVector
simplex(String fonName, realVector guess)	Sets the function to be optimized, sets the initial guess values and performs optimization using Simplex method	realVector
simplex(String fcnName, realVector guess, integer maxIter)	Sets the function to be optimized, sets the initial guess values and performs optimization using Simplex method. Terminates when maxIter reached.	realVector
setFunction(String fonName)	Sets function to be optimized.	void
setGuess (realVector guess)	Sets the initial guess values.	void
setOptimizer (String optName)	Sets the optimization method.	void

setStrategy (String strategyName)	Sets optimization strategy (minimize or maximize)	void

Appendix E -- Library: Analysis

The Analysis library can be used to compute numerical derivatives and numerical integral of functions and to get solutions for ordinary differential equations (ODE). The Analysis library contains four classes: All, Differentiator, Integrator, and ODE Solver.

E. 1 Classes

The table below lists the classes and their paths.

Class Name	Class Path
All	library.analysis.All
Differentiator	library.analysis.Differentiator
Integrator	library.analysis.Integrator
HYP_ODE	library.analysis.HYP_ODE
ODE_Solver	library.analysis.ODE_Solver

E. 2 Functions

The table below lists in alphabetical order the functions in the Differentiator class.

Call Signature	Description	Return Type
derivative (polynomial poly)	Returns the derivative of a polynomial.	polynomial
dydx(String fcnSignature, real x, real stepSize)	Returns the approximate derivative of a new function at x .	real
dydx(String fonSignature, real x)	Returns the approximate derivative of an existing function at x .	real
dydx (realVector X, realVector Y)	Returns an approximate differentiation of Y with respect to X.	realVector
jacobian(String fonSignature, realVector x)	Returns an approximate partial derivative at x .	realMatrix
setStepSize(real stepSize)	Sets the step size for differentiation or integration.	void

The table below lists in alphabetical order the functions in the Integrator class.

Call Signature	Description	Return Type
integral (polynomial poly, real constant)	Returns the integral of a polynomial.	polynomial
integral (polynomial poly, integer constant)	Returns the integral of a polynomial.	polynomial
integral (polynomial poly)	Returns the integral of a polynomial.	polynomial
quadrature (real a, real b)	Returns approximate integral of a function from a to b using Quadrature method.	real
quadrature (String fonSignature, real a, real b)	Returns approximate integral of a function from a to b using Quadrature method.	real
romberg (real a, real b)	Returns approximate integral of a function from a to b using Romberg method.	real
```romberg(String fcnSignature, real a, real b)```	Returns approximate integral of a function from a to b using Romberg method.	real
setFunction(String fonSignature)	Sets the integrand function.	void
simpson(real a, real b)	Returns approximate integral of a function from a to bo using Simpson method.	real
simpson(String fenSignature, real a, real b)	Returns approximate integral of a function from a to b using Simpson method.	real
simpsonRichardson(real a, real b)	Returns approximate integral of a function from a to b using Simpson-Richardson method.	real
simpsonRichardson(String fonSignature, real a, real b)	Returns approximate integral of a function from a to b using Simpson-Richardson method.	real
```trapeze(double from, double to)```	Returns approximate integral of a function from from to to using Simpson-Richardson method.	real
trapeze (String fonSignature, double from, double to)	Returns approximate integral of a function from from to to using Simpson-Richardson method.	real
```tricub(real xi, real yi, real xj, real yj, real xk, real yk, real acc)```	Returns approximate definite double integral of a function over the triangular domain with vertices (xi,yi), (xj,yj), and (xk,yk) using Tricube method.	real
```tricub(String fcnSignature, real xi, real yi, real xj, real yj, real xk, real yk, real acc)```	Returns approximate definite double integral of a function over the triangular domain with vertices (xi,yi), (xj,yj), and (xk,yk) using Tricube method.	real

The table below lists in alphabetical order the functions in the HYP_ODE class.

		Type
setDiffFcn(String odeSignature)	Sets up the differential equation function.	void
computeDerivative()	Computes derivative for ODE	real

The table below lists in alphabetical order the functions in the ODE Solver class.

Call Signature	Description	Return Type
euler(String odeSignature, real start, real stop, real stepSize, realVector initVec)	Returns solution of an ordinary differential equation.	realMatrix
setStepSize (real stepSize)	Sets the step size for differentiation or integration.	void

Appendix F -- Library: Estimation

The Estimation library can be used to compute interpolation, polynomial least square fit, and linear regression. The Estimation library contains four classes: All, Interpolator, PolynomialLeastSquare, and LinearRegression.

F.1Classes

The table below lists the libraries and their class paths.

Class Name	Class Path
All	library.estimation. All
Interpolator	library.estimation. Interpolator
Linear Regression	library.estimation. LinearRegression
Polynomial Regression	library.estimation. PolynomialRegression

F. 2 Functions

The All class contains functions of the other three classes in the Estimation library. When more than one class have functions of the same name, the function names are modified in the All class. The table below list these name changes.

All	Polynomial Regression	Linear Regression
getErrorMatrix()	getPolyErrorMAtrix()	getErrorMatrix()

The table below lists in alphabetical order the functions in the Interpolator class.

Call Signature	Description	Return Type
interpolate(real a)	Returns interpolated value corresponding to a, for independent vector \mathbf{x}, dependent vector \mathbf{y}, and the interpolator already been set.	real
lagrange (realVector \mathbf{x}, realVector y, real a)	Returns interpolated value corresponding to a, for independent vector \mathbf{x} and dependent vector \mathbf{y}, using Lagrange Interpolator.	real
linear (realVector \mathbf{x}, realVector y, real a)	Returns interpolated value corresponding to a, for independent vector \mathbf{x} and dependent vector \mathbf{y}, using Linear Interpolator.	real
```linear(realVector x, realVector y, real a, integer index)```	Returns interpolated value corresponding to a, for independent vector $\mathbf{x}$ and dependent vector $\mathbf{y}$, using Linear Interpolator and pre-computed index	real


	for the independent vector.	
neville (realVector $x$, realVector $y$, real a)	Returns interpolated value corresponding to $\mathbf{a}$, for independent vector $\mathbf{x}$ and dependent vector $\mathbf{y}$, using Neville Interpolator.	real
```newton(realVector x, realVector y, real number)```	Returns interpolated value corresponding to a, for independent vector $\mathbf{x}$ and dependent vector $\mathbf{y}$, using Newton Interpolator.	real
resetCoefficients()	If the interpolator is set to Newton Interpolator, Resets coefficients.	void
setLagrange (realVector x , realVector y)	Sets to interpolator to the Lagrange Interpolator for vector \mathbf{x} and vector \mathbf{y}.	void
```setLinear(realVector x, realVector y)```	Sets to interpolator to the Linear Interpolator for vector $\mathbf{x}$ and vector $\mathbf{y}$.	void
```setNeville(realVector x, realVector y)```	Sets to interpolator to the Neville Interpolator for vector $\mathbf{x}$ and vector $\mathbf{y}$.	void
```setNewton(realVector x, realVector y)```	Sets to interpolator to the Newton Interpolator for vector $\mathbf{x}$ and vector $\mathbf{y}$.	void
```setSpline(realVector x, realVector y)```	Sets to interpolator to the Spline Interpolator for vector $\mathbf{x}$ and vector $\mathbf{y}$.	void
spline (realVector x, realVector y, real a)	Returns interpolated value corresponding to \mathbf{a}, for independent vector \mathbf{x} and dependent vector \mathbf{y}, using Spline Interpolator.	real
spline (realVector x, realMatrix y, real a)	Returns 2-dimensional interpolated value corresponding to \mathbf{a}, for independent vector \mathbf{x} and dependent matrix y, using Spline Interpolator.	real
valueAndError (real a)	If the interpolator is set to Neville Interpolator, returns the interpolated value and error corresponding to \mathbf{a}, for independent vector \mathbf{x} and dependent vector \mathbf{y} already been set.	realVector

The table below lists in alphabetical order the functions in the Linear Regression class.

Call Signature	Description Type	
getCorrelationCoefficient()	Returns correlation coefficient.	real
getErrorMatrix()	Returns error matrix.	realMatrix
getIntercept()	Returns intercept value.	real
getPolynomial()	Returns polynomial	polynomial
getSlope()	Returns slope value.	real
linearRegression (realVector vecX, Real_vector vecY)	Returns a polynomial corresponding to independent vector x and dependent vector y, estimated using Linear Regression.	polynomial

The table below lists in alphabetical order the functions in the Polynomial Regression class.

Call Signature	Description Type	
getErrorMatrix ()	Returns error matrix.	RealMatrix polynomialLSFit (realVector vecX, realVector vecY, integer n) Returns least square estimated polynomial.
polyError (real \mathbf{x})	Return error value.	real

Appendix G -- Library: Stochastic

The Stochastic library can be used for probability and statistical computations. Stochastic library contains sixteen classes.

G. 1 Classes

The table below lists the classes in the Stochastic library and their paths.

Class Name Class Path	
Histogram	library.stochastic.Histogram
BetaDistribution	library.stochastic. BetaDistribution
CauchyDistribution	library.stochastic. CauchyDistribution
ChiSquareDistribution	library.stochastic. ChiSquareDistribution
ExponentialDistribution	library.stochastic. ExponentialDistribution
FisherSnedecorDistribution	library.stochastic.FisherSnedecorDistribution
FisherTippettDistribution	library.stochastic. FisherTippettDistribution
GammaDistribution	library.stochastic. GammaDistribution
HistogrammedDistribution	library.stochastic. HistogrammedDistribution
LaplaceDistribution	library.stochastic. LaplaceDistribution
LogNormalDistribution	library.stochastic. LogNormalDistribution
NormalDistribution	library.stochastic. NormalDistribution
ProbabilityDistribution	library.stochastic. ProbabilityDistribution
StudentDistribution	library.stochastic.StudentDistribution
TriangularDistribution	library.stochastic.TriangularDistribution
UniformDistribution	library.stochastic. UniformDistribution
WeibullDistribution	library.stochastic. WeibullDistribution

G. 2 Functions

The table below lists in alphabetical order the functions for the Histogram class.

Call Signature	Description	Return Type
average ()		real
average (realVector vec)		real
binContent (real \mathbf{x})		real
binIndex (real \mathbf{x})		integer
binParameters (real \mathbf{x})		realVector
binWidth ()	real	

count()		integer
countsBetween(real x, real y)		real
countsUpto(real x)		real
dimension()		real
errorOnAverage()		real
kurtosis ()		real
maximum()		real
minimum()		real
overflow()		integer
processData(realVector vec)		void
range()		realVector
reset()		void
setGrowthAllowed()		void
setIntegerBinWidth()		real
size()		real
skewness()		integeger
standardDeviation()		real
totalCount()		real
underflow()		real
variance()		
xValueAt(integer index)		
yValueAt(integer index)		

The table below lists in alphabetical order the functions common to all the probability distributions.

Call Signature	Description	Return Type
```approximateValueAndGradient( real x)```	Returns an approximation of the gradient.	realVector
average ()	Returns the average of the distribution.	real
distributionName()	Returns the name of the distribution.	String
distributionValue(real x)	Returns the probability of finding a random variable smaller than or equal to $\mathbf{x}$.	real
```distributionValue(real x1, real x2)```	Returns the probability of finding a random variable between $\mathbf{x 1}$ and $\mathbf{x 2}$.	real
eval (real x)	Returns probability density function	real
inverseDistributionValue (real x)	Returns the value for which the distribution function is equal to \mathbf{x}.	real
kurtosis()	Returns kurtosis of the distribution.	real
parameters ()	Returns parameters for the selected distribution.	realVector
random()	Returns a random number according to the set	real

	distribution.	
random(integer 1)	Returns real vector of length 1 whose elements are random numbers according to the set distribution.	realVector
random(real 1)	Returns real vector of length 1 whose elements are random numbers according to the set distribution.	realVector
random(integer m, integer n)	Returns real matrix of size mxn whose elements are random numbers according to the set distribution.	realMatrix
random(integer m, real n)	Returns real matrix of size mXn whose elements are random numbers according to the set distribution.	realMatrix
random(real m, integer n)	Returns real matrix of size mXn whose elements are random numbers according to the set distribution.	realMatrix
random(real m, real n)	Returns real matrix of size $m \times n$ whose elements are random numbers according to the set distribution.	realMatrix
setHistogram(Histogram histo)	Sets the parameters of the distribution according from the histogram histo.	void
setParameters (realVector params)	Sets the parameters of the distribution according to params.	void
setSeed (integer seed)	Sets the seed of the random number generator.	void
skewness ()	Returns skewness for the distribution.	real
standardDeviation()	Returns standards deviation of the distribution from variance.	real
valueAndGradient (real x)	Returns the value and the gradient of the distribution with respect to the parameters.	realVector
variance()	Returns the variance of the distribution.	real

The table below lists in alphabetical order the functions pertinent to the Cauchy distribution.

Call Signature	Description	Return Type
setCenter (real center)	Sets center value for Cauchy Distribution. Valid for Cauchy Distribution only.	void
setWidth (real width)	Sets beta value for Cauchy Distribution. Valid for Cauchy Distribution only.	void

The table below lists in alphabetical order the functions for the Chi-Squared distribution.

Call Signature	Description Type	
confidenceLevel (real x)	Set the confidence level to x. Only valid for Chi Square, Fisher Snedecor, and Student distributions.	real
setDegreesOfFreedom (int n)	Valid only for Chi Square Distribution.	void

The table below lists in alphabetical order the functions pertinent to the Fisher Snedecor distribution.

Call Signature	Description	Return Type
defineParameters (integer n 1, integer n 2)	Define parameters for FisherSnedecor distribution.	void
confidenceLevel (real x)	Set the confidence level to x. Only valid for Chi Square, Fisher Snedecor, and Student distributions.	real

The table below lists in alphabetical order the functions pertinent to the Fisher Tippett distribution.

Call Signature	Description	Return Type
defineParameters (real center, real scale)	Define parameters for Fisher Tippett distribution.	void

The table below lists in alphabetical order the functions pertinent to the Gamma distribution.

Call Signature	Description	Return Type
defineParameters (real shape, real scale)	Define parameters for Gamma distribution.	void

The table below lists in alphabetical order the functions pertinent to the Laplace distribution.

Call Signature	Description	Return Type
defineParameters (real center, real scale)	Define parameters for Laplace distribution.	void

The table below lists in alphabetical order the functions pertinent to the Normal distribution.

Call Signature	Description Type	
errorFunction (real x)	Returns error function for the Normal distribution.	real
eval (real x)	Returns probability density function Returns the density function for a (0,1) Normal distribution evaluated at x.	real
setAverage (real average)	Set the average value for the Normal Distribution. Valid only for the Normal Distribution.	void
setParameters (realVector params)	Set parameters	
setStandardDeviation (real standardDeviation)	Set the standard deviation value for the Normal Distribution. Valid only for the Normal Distribution.	void

The table below lists in alphabetical order the functions pertinent to the Student distribution.

Call Signature	Description	Return Type
confidenceLevel (real x)	Set the confidence level to x. Only valid for Chi Square, Fisher Snedecor, and Student distributions.	real
defineParameters (integer n)	Define parameters for Student distribution.	void
eval (real \mathbf{x})	Returns probability density function	real

The table below lists in alphabetical order the functions pertinent to the Uniform distribution.

Call Signature	Description Type	
eval (real x)	Returns probability density function	real
setLimits (real low, real high)	Sets the lower and upper limits for the Uniform distribution.	void

The table below lists in alphabetical order the functions pertinent to the Weibull distribution.

Call Signature	Description	Return Type
defineParameters (real shape, real scale)	Define parameters for Weibull distribution.	void

The Probability Distribution class combines all the separate distributions in one single class. Any of the distributions can be used from the Probability Distribution class. The Probability Distribution class contains all the methods listed in the previous tables plus some extra functions. The table below lists in alphabetical order the functions special to the Probability Distribution class.

Call Signature	Description	Return Type
average ()	Returns average value	real
beta (real shape1, real shape2)	Returns a random number according to Beta Distribution with shape 1 set to shape 1 and shape2 set to shape2.	real
cauchy (double location, double scale)	Returns a random number according to Cauchy distribution.	real
chiSquare (integer dof)	Returns a random number according to Chi Square Distribution with degrees-of-freedom set to dof.	real
confidenceLevel (real x)	Return confidence level	real
defineParameters (double shapeOrCenter, double scale)	Defines parameters for Gamma, Fisher Tippett, or Laplace distribution.	void
defineParameters (integer n)	Defines parameter for Student distribution	void
defineParameters (integer n1, integer n2)	Defines parameter for Fisher Snedecor distribution	void
distributionName()	Returns name of the distribution	string
distributionValue(real x)	Returns the value of the distribution.	real
distributionValue(real x1, real x2)	Returns the difference between the values of the distribution due to x 1 and x 2 .	real
eval (real x)	Evaluates Uniform, Gamma, or Student distribution for the value of x	real
exponential (real rate)	Returns a random number according to Exponential Distribution with rate set rate.	real
```fisherSnedecor(integer dof1, integer dof2)```	Returns a random number according to Fisher Snedecor Distribution with the first degrees-of-freedom set to dof1 and the second degrees-of-freedom set to dof2.	real


fisherTippett(real center, real scale)	Returns a random number according to Fisher Tippett Distribution with the center set to center and the scale set to scale.	real
gamma (real shape1, real scale)	Returns a random number according to Gamma Distribution with the shape1 set to shape1 and the scale set to scale.	real
inverseDistributionValue (real x)	Returns the inverse value	real
kurtosis()	Return kurtosis.	real
laplace (real center, real scale)	Returns a random number according to Laplace Distribution with the center set to center and the scale set to scale.	real
logNormal ()	Returns a random number according to Log Normal Distribution with mean set to 0.0 and standard deviation set to 1.0 .	real
```logNormal (real mean, real stdDev)```	Returns a random number according to Log Normal Distribution with mean set to mean and standard deviation set to stdDev.	real
Normal ()	Returns a random number according to Normal Distribution with mean set to 0.0 and standard deviation set to 1.0	real
normal (real mean, real stdDev)	Returns a random number according to Normal Distribution with mean set to mean and standard deviation set to stdDev.	real
parameters()	Returns the parameters of the distribution.	realVector
random()	Returns a random value for the distribution that has already been set.	real
setAverage (real average)	Sets average for ormal distribution.	void
```setBeta(real shape1, real shape2)```	Sets the distribution to Beta Distribution with shape1 set to shape1 and shape2 set to shape2.	void
setBeta (Histogram histo)	Sets the distribution to Beta Distribution from a histogram.	void
setCauchy (real center, real width)	Sets the distribution to Cauchy Distribution with center set to center and scale set to scale.	void
setCauchy (Histogram histo)	Sets the distribution to Cauchy Distribution from a histogram.	void
setCenter(real center)	Sets center for the Cauchy Distribution.	void
setChiSquare (Histogram histo)	Sets the distribution to Chi Square Distribution from a histogram.	void
setChiSquare(integer dof)	Sets the distribution to Chi Square Distribution with degrees-of-freedom set to dof.	void
setDegreesOfFreedom(integer n )	Sets degrees-of-freedom for Chi Square Distribution	void
setExponential (real rate)	Sets the distribution to Exponent Distribution	void


	with rate set to rate.	
setExponential (Histogram histo)	Sets the distribution to Exponent Distribution from a histogram.	void
setFisherSnedecor (Histogram histo)	Sets the distribution to Fisher Snedecor Distribution from a histogram.	void
```setFisherSnedecor(integer dof1, integer dof2)```	Sets the distribution to Fisher Snedecor Distribution with the first degrees-of-freedom set to dof1 and the second degrees-offreedom set to dof2.	void
```setFisherTippett(real center, real scale)```	Sets the distribution to Fisher Tippett Distribution with center set to center and scale set to scale.	void
```setFisherTippett(Histogram histo)```	Sets the distribution to Fisher Tippett Distribution from a histogram.	void
setGamma (real shape1, real scale)	Sets the distribution to Gamma Distribution with shape set to shape1 and scale set to scale.	void
setGamma (Histogram histo)	Sets the distribution to Gamma Distribution from a histogram.	void
setHistogram(Histogram histo)	Sets histogram for the distribution	void
setLaplace (real center, real scale)	Sets the distribution to Laplace Distribution with center set to center and scale set to scale.	void
setLaplace (Histogram histo)	Sets the distribution to Laplace Distribution from a histogram.	void
setLogNormal ()	Sets the distribution to Log Normal Distribution with mean set to 0.0 and standard deviation set to 1.0 .	void
```setLogNormal (real mean, real stdDev)```	Sets the distribution to Log Normal Distribution with mean set to mean and standard deviation set to stdDev.	void
setLogNormal (real mean, real stdDev)	Sets the distribution to Log Normal Distribution from a histogram.	void
setNormal (Histogram histo)	Sets the distribution to Normal Distribution with mean set to 0.0 and standard deviation set to 1.0.	void
```setNormal (real mean, real stdDev)```	Sets the distribution to Normal Distribution with mean set to mean and standard deviation set to stdDev.	void
setNormal (Histogram histo)	Sets the distribution to Normal Distribution from a histogram.	void
setParameters (realVector params)	Sets parameters for the distribution	void
setSeed (integer seed)	Sets seed for the distribution.	void
```setStandardDeviation(real standardDeviation)```	Sets standard deviation for the Normal distribution	void
setStudent (Histogram histo)	Sets the distribution to Student Distribution	void


	from a histogram.	
setStudent(integer dof)	Sets the distribution to Student Distribution with degrees-of-freedom set to dof.	void
setTriangular(real low, real high, real peak)	Sets the distribution to Triangular Distribution with the low set to low, high set to high and the peak set to peak.	void
setTriangular(Histogram histo)	Sets the distribution to Triangular Distribution from a histogram.	void
setUniform()	Sets the distribution to Uniform Distribution. Generated random numbers will be between 1.0 and 1.0.	void
setUniform(real a, real b)	Sets the distribution to Uniform Distribution with lower and upper limits of the generated random number set to a and b .	void
setUniform(Histogram histo)	Sets the distribution to Uniform Distribution from a histogram.	void
```setWeibull(real shape1, real scale)```	Sets the distribution to Weibull Distribution with shape set to shape1 and scale set to scale.	void
setWeibull (Histogram histo)	Sets the distribution to Weibull Distribution from a histogram.	void
setWidth(real width)	Set width to Cauchy Distribution	void
skewness ()	Return skewness.	real
standardDeviation()	Return standard deviation,	real
student(int dof)	Returns a random number according to Student Distribution with degrees-of-freedom set to dof.	real
triangular (real low, real high, real peak)	Returns a random number according to Triangular Distribution with the low set to low, high set to high and the peak set to peak.	real
uniform()	Returns a random number according to Uniform Distribution with the range set to between -1.0 and 1.0.	real
uniform(real a, real b)	Returns a random number according to Uniform Distribution with the with range set to between a and b .	real
valueAndGradient (double x)	Returns value and gradient from the distribution..	realVector
variance()	Returns variance from the distribution.	real
weibull (real shape1, real scale)	Returns a random number according to Weibull Distribution with the shape 1 set to shape1 and the scale set to scale.	real

Appendix H -- Library: Frequency Domain

The Frequency Domain library contains one class, FFT.

H. 1 Classes

The table below lists the classes and their paths.

Class Name	Class Path
FFT	library.frequency_domain.FFT

H. 2 Functions

The table below lists in alphabetical order the functions in the FFT class.

Call Signature	Description	Return Type
fft(realVector real)	Returns a complex vector whose elements have been Fourier transformed from a real vector. The length of the output vector is the same as the length of the input vector.	complexVector
fft(table real)	Returns a complex vector whose elements have been Fourier transformed from a real vector. The length of the output vector is the same as the length of the input vector.	complexVector
fft(realVector real, realVector imag)	Returns a complex vector whose elements have been transformed from a complex vector whose real and imaginary parts are given in real and imag. The length of the output vector is the same as the length of the input vector.	complexVector
fft(complexVector vec)	Returns a complex vector whose elements have been transformed from a complex vector. The length of the output vector is the same as the length of the input vector.	complexVector
fft (table real, table imag)	Returns a complex vector whose elements have been transformed from a complex vector whose real and imaginary parts are given in real and imag. The length of the output vector is the same as the length of the input vector.	complexVector
```fft(realVector real, integer n)```	Returns a complex vector whose elements have been Fourier transformed for n data points from a real vector. The length of the output vector is $\mathbf{n}$.	complexVector
fft(table real, integer n)	Returns a complex vector whose elements have been Fourier transformed for n data points from a real vector. The length of the output vector is $\mathbf{n}$.	complexVector
fft(realVector real,	Returns a complex vector whose elements have	complexVector


realVector imag, integer   $\mathrm{n})$	been Fourier transformed for n data points from a   complex vector whose real and imaginary parts are   given in real and imag. The length of the   output vector is n.	
fft (complexVector vec,   integer $n$ )	Returns a complex vector whose elements have   been Fourier transformed for n data points from a   complex vector. The length of the output vector is   n.	complexVector
fft (table real, table   imag, integer $n$ )	Returns a complex vector whose elements have   been Fourier transformed for $n$ data points from a   complex vector whose real and imaginary parts are   given in real and imag. The length of the   output vector is $n$.	complexVector

