
VIRTUAL COMPUTING

Hyper
An Object Oriented Scripting Language

Reference Manual

Shaheen Hoque

8/6/2017

Developed by Shaheen Hoque, Hyper is a general purpose object oriented interpreted scripting
language with an emphasis on technical computation. Hyper combines powerful object oriented
programming (OOP) with an easy to use interpretive environment.

Contents

Table of Contents
1 Introduction ... 5

2 Interactive Commands .. 5

3 Utility Functions ... 7

4 Syntax ... 8

4.1 Lexical Conventions ... 8

4.1.1 Comments: .. 8

4.1.2 Reserved Words: ... 8

4.1.3 Literals: ... 9

4.1.4 Identifier:... 10

4.1.5 Operators: .. 11

4.2 Data Types.. 11

4.2.1 Boolean ... 12

4.2.2 Character ... 13

4.2.3 String ... 13

4.2.4 Integer ... 14

4.2.5 Real ... 14

4.2.6 Imaginary .. 15

4.2.7 Complex .. 15

4.2.8 Quaternion... 16

4.2.9 Polynomial .. 17

4.2.10 Rational ... 19

4.2.11 Range .. 19

4.2.12 Vector .. 21

4.2.13 Matrix .. 26

4.2.14 Array ... 40

4.2.15 Table ... 41

4.3 Statements .. 41

4.3.1 Expression ... 41

4.3.2 Control Flow Statements... 42

4.3.3 Try Catch Finally Statements.. 46

4.4 Functions .. 47

4.4.1 Declaration .. 47

4.4.2 Call .. 48

4.5 Class ... 49

4.6 Import ... 50

4.6.1 Import Script ... 50

4.6.2 Import Java.. 51

5 Class Libraries .. 52

5.1 General Math .. 53

5.2 Linear Algebra.. 54

5.2.1 Utility .. 54

5.2.2 Linear Equations ... 54

5.2.3 Linear Least Squares ... 56

5.2.4 Eigen ... 58

5.2.5 Singular Value .. 59

5.3 Zero Min Max .. 61

5.3.1 Root Finder ... 62

5.3.2 Optimizer .. 63

5.4 Analysis .. 65

5.4.1 Differentiator... 65

5.4.2 Integration ... 68

5.4.3 Ordinary Differential Equation ... 70

5.5 Estimation... 72

5.5.1 Interpolation .. 72

5.5.2 Linear Regression ... 75

5.5.3 Polynomial Regression ... 77

5.6 Stochastic ... 78

5.6.1 Statistics .. 79

5.6.2 Probability ... 82

5.7 Frequency Domain ... 101

5.7.1 FFT .. 101

Appendix A -- Library: General Math .. 103

Appendix B -- Library: Math2 .. 135

Appendix C -- Library: Linear Algebra .. 136

Appendix D -- Library: Zero Min Max... 142

Appendix E -- Library: Analysis... 145

Appendix F -- Library: Estimation ... 148

Appendix G -- Library: Stochastic .. 151

Appendix H -- Library: Frequency Domain ... 161

1 Introduction

Hyper is a general-purpose object oriented interpreted scripting language with an emphasis on

technical computation. Hyper combines powerful object-oriented programming (OOP) with an

easy to use interpretive environment. Hyper can be used in two different modes: interactive and

batch script. In the interactive mode, the user can type a command or a statement in a console

and get the output immediately. In the batch script mode, the user can write a script and run the

script by typing the name of the script file in the consol. The interactive mode has some shell-

like commands (similar to Linux/Unix/DOS) which provide utility functions. The syntax of

Hyper is similar to the syntax of Java, with some exceptions. In addition to the scripting,

programs can also be written in Java, compiled and imported into the Hyper’s interpretive

environment. The imported classes in the compiled java binary can be accessed as easily as

accessing the classes written in Hyper scripting language. In fact, any pre-compiled java classes

can be accessed this way, including all the public classes in the Java API. Hyper is fully

integrated with the java APIs.

Hyper is a full fledge object oriented language. The object-oriented features such as

encapsulation, inheritance, and polymorphism are implemented using classes and objects. It

features try catch and finally. It also features strong typing with default parameter values and

multiple parameters return from a function call. Hyper supports a rich set of data types related to

mathematics and other technical computation, such as Complex, Matrix, Polynomial and

several others, in addition to the data types found in a typical programming language. Hyper

features a large library of functions, such as Linear Algebra, Probability and Statistics, in

addition to the basic math functions.

This document is a reference manual for the Hyper language. It’s not intended to be a tutorial.

A separate tutorial will be produced at a later time. Section 2 and 3 describes shell commands

and utility functions. Section 4 describes the syntax of Hyper language. Section 5 describes the

class libraries. Appendices A-G provides detail documentations of the function call signatures of

the class libraries.

2 Interactive Commands

The following commands can be used in the interactive mode:

Command Argument Description
cd <path> Changes default directory

Path can be specified in the similar fashion as in DOS or Unix.

“..” implies path for the directory above the current directory.

clear <filter> Clears variable(s) from the workspace

Filter can be keywords, “all”, “var”, “fcn”, “lib”, and “screen” or partial

variable name with single (?) or multiple (*) wild cards.

“all” implies everything in the workspace.

“var” implies only variables.

“fcn” implies functions.

“lib” implies imported Java library.

“screen” implies the console output screen.

ls <filter> Prints in a table format the list of the files in the current working directory.

Filter can be partial file name with single (?) or multiple (*) wild cards used in

a similar fashion to DOS or Unix.

If no filter is used, the entire list will be printed.

lsd <filter>

<sort key>
Prints in a detailed format the list of the files in the current working directory.

Detailed format consists of 4 columns: Name, Type, Size, and Date Modified.

Filter usage is the same as in “ls” command.

An optional second argument can be used as a sort key. An optional Plus(“+”)

or minus (“-”) character can be used before the sort key to sort in ascending or

descending order. The default sort order is ascending. The following sort keys

can be used: “name”, “type”, “size”, and “date”. The default sort key is

“name”.

pwd none Print the working directory

ws <filter> Prints in a table format the list of variables in the current workspace.

Filter can be keywords, “all”, “var”, “fcn” and “lib” or partial variable name

with single (?) or multiple (*) wild cards.

“all” implies everything in the workspace.

“var” implies only variables.

“fcn” implies only functions.

“lib” implies only imported Java library.

If no filter is used, only the variables will be printed.

(Same as using the “var” filter)

wsd <filter> Prints in a detailed format the list of variables in the current workspace.

Detailed format consists of 2 columns: Name and Type.

Filter usage is the same as in “ws” command.

wsv <filter> Prints in a detailed format the list of variables in the current workspace.

Detailed format consists of 3 columns: Name and Type, and Value.

Filter usage is the same as in “ws” command.

Text between the angle brackets (<>) are provided by the user. Although these commands

cannot be accessed from the script, but there are equivalent functions that can be called from the

script to obtain similar results. These functions are called Utility functions. For example, to

change directory in the interactive mode, the user can type the following command:

cd ..\abc

But when writing a script, the user needs to call the following function:

changedir(“..\abc”);

More details of the Utility functions are described in the next section.

3 Utility Functions

Utility functions for Hyper are listed alphabetically in the table below:

Call Signature Description
Return

Type

changedir(<path>) Changes the working directory according to <path> void

clearws(<var list>) Clears the variables in the <var list> from the work space. void

exec(<Script name>) Executes the named script. void

getworkingdir() Returns the path of the current working directory. string

listdir(<filter>) Returns a filtered list of the files in the current working

directory.

list

maxdigits(<arg>) Sets the maximum number of digits after the decimal point

corresponding to the absolute value of the parameter <arg>.

<arg> can be a long value, or a double value. If double value

used, the fractional part is ignored.

If no argument or more than 1 argument used, the current

maximum number of digits is displayed.

integer

notation(<arg>) Sets the output notation in one of the following formats:

REGULAR, SCIENTIFIC, or ENGINEERING. The output

format can be specified by using the parameter <arg>. <arg>

can be a string, an integer value, or a real value. “regular”, reg”,

1, 1.0 corresponds to the notation REGULAR. “scientific”,

“sci”, 2, 2.0 corresponds to the notation SCIENTIFIC. “regular”,

string

reg”, 1, 1.0 corresponds to the notation REGULAR.

“engineering”, “eng”, 3, 3.0 corresponds to the notation

ENGINEERING. String arguments are case insensitive.

If no argument or more than 1 argument used, the current

notation is displayed.

print(<arg>) Prints the argument. The argument can be a string or a variable. void

4 Syntax

4.1 Lexical Conventions

4.1.1 Comments:

Comments : "//"

Two forward slashes used to comment out the texts after the double slashes in a given line. This

is similar to the comments used in Java and C++ languages.

Example:

// This is a comment.

4.1.2 Reserved Words:

RESERVED WORDS:

“break”

"catch"

"class"

“default”

"else"

"finally"

"for"

"function"

"if"

"import"

"in"

“loop”

“switch”

"return"

"throw"

"try"

"while"

4.1.3 Literals:

4.1.3.1 Decimal Literal:

DECIMAL_LITERAL: ["1"-"9"] (["0"-"9"])*

HEX_LITERAL: "0" ["x","X"] (["0"-"9","a"-"f","A"-"F"])+

OCTAL_LITERAL: "0" (["0"-"7"])*

FLOATING_POINT_LITERAL:

 (["0"-"9"])+ "." (["0"-"9"])* (<EXPONENT>)?

 | "." (["0"-"9"])+ (<EXPONENT>)?

 | (["0"-"9"])+ <EXPONENT>

EXPONENT: ["e","E"] (["+","-"])? (["0"-"9"])+

Example:

-1.602E-19

4.1.3.2 Character Literal:

CHARACTER_LITERAL:

 "'"

 ((~["'","\\","\n","\r"])

 | ("\\"

 (["n","t","b","r","f","v","\\","'","\""]

 | ["0"-"7"] (["0"-"7"])?

 | ["x","X"] ["0"-"9","a"-"f","A"-"F"] (["0"-"9","a"-"f","A"-"F"])?

)

)

)

 "'"

Examples:

‘c’

‘5’

4.1.3.3 String Literal:

STRING_LITERAL:

 "\""

 ((~["\"","\\","\n","\r"])

 | ("\\"

 (["n","t","b","r","f","v","\\","'","\""]

 | ["0"-"7"] (["0"-"7"])?

 | ["x","X"] ["0"-"9","a"-"f","A"-"F"] (["0"-"9","a"-"f","A"-"F"])?

)

)

)*

 "\""

Example:

“This is a String”

“This is a String with a carriage return \n”

“This is a String with a back slash \\”

4.1.4 Identifier:

IDENTIFIER: <LETTER> (<LETTER>|["0"-"9"])*

Example:

Abc_123

LETTER: ["_","a"-"z","A"-"Z"]

DIGIT: ["0"-"9"] >

Separators: [",", ";", "(" , ")", "{", "}", "[", "]", ".", "::",]

4.1.5 Operators:

Operators:

Symbol Operation
"=" Assignment

">" Greater than

"<" Less than

"!" Not

"==" Equal

"<=" Less than or equal

">=" Greater than or equal

"!=" Not equal

"||" Or

"&&" And

"+" Plus

"-" Minus

"*" Multiply

"/" Divide

"^" Exponent

"%" Remainder

":" Range

4.2 Data Types

Hyper supports the following data types:

o Boolean

o Character

o String

o Numeric

▪ Integer

▪ Real

▪ Imaginary

▪ Complex

▪ Quaternion

▪ Polynomial

▪ Rational

▪ Range

▪ Vector

• Real Vector

• Complex Vector

• Quaternion Vector

• Polynomial Vector

• Rational Vector

▪ Matrix

• Real Matrix

• Complex Matrix

• Quaternion Matrix

• Polynomial Matrix

• Rational Matrix

o Array

o Table

o Class

Variables representing the data types have attributes that can be used to obtain various properties

of a variable. All data types share some common attributes, and some data types have special

attributes. These attributes can be accessed using dot notation as below:

<another var> = <var>.<attribute>;

or

<another var> = <var>.<attribute>(<param_1>, …, <param_n”);

The common attributes are given in the table below:

Call Signature Description
Return

Type

type Returns the name of the type of the variable. string

isA(type) Returns TRUE if the parameter type is the type of the variable, and

returns FALSE otherwise.
boolean

4.2.1 Boolean

boolean: “True” | “False”

A variable, <var>, can be defined as boolean by following ways:

<var> = boolean();

or

<var> = <boolean value>;

Examples:

b = boolean(1); -> b = true.

b = boolean(0); -> b = false.

b = True;

b = false;

4.2.2 Character

Character: CHARACTER_LITERAL

A variable, <var>, can be defined as character by following ways:

<var> = char(“<value”);

or

<var> = ‘<value>’;

Examples:

c = char(“a”);

c = ‘a’;

c = ‘5’;

4.2.3 String

String: STRING_LITERAL

A variable, <var>, can be defined as String by following ways:

<var> = String(<value>);

or

<var> = “<Value>”;

Examples:

str = String(“This is a String”);

str = “This is a String”;

Attributes for String type are given in the table below:

Call Signature Description
Return

Type

length Returns the length. integer

index Returns the index of a character. integer

rindex Returns the right index of a character. integer

substring Returns a sub string. string

toLowerCase Returns the same string with all lower-case characters. string

toUpperCase Returns the same string with all upper-case characters. string

startsWith Tests if this string starts with the specified prefix. boolean

endsWith Tests if this string ends with the specified suffix. boolean

split Returns a list with elements obtained from splitting the string. arrayList

4.2.4 Integer

The integer data type is a 32-bit signed two's complement integer, which has a minimum value

of -231 and a maximum value of 231-1.

integer : DECIMAL_LITERAL

A variable, <var>, can be defined as long by following ways:

<var> = integer(<value>);

or

<var> = <integer value>;

Examples:

i = integer(3.2); -> i = 3.
i = 10;

4.2.5 Real

 The real data type is a double-precision 64-bit IEEE 754 floating point.

real : FLOATING_POINT_LITERAL

A variable, <var>, can be defined as double by following ways:

<var> = real(<value>);

or

<var> = <real value>;

Examples:

r = real(2); -> r = 2.0.

r = 3.14;

r = 9.11E-31;

4.2.6 Imaginary

A variable, <var>, can be defined as imaginary by following ways:

<var> = imaginary(<value>);

or

<var> = <value>i;

<value> can be either integer or double;

Examples:

imag = imaginary(2.5); -> imag = 2.5i

or

imag = imaginary(2); -> imag = 2.0i

or

imag = 2.5i;

or

imag = 2i; -> imag = 2.0i

4.2.7 Complex

A variable, <var>, can be defined as complex by following ways:

<var> = complex(<value>,<value>)

or

<var> = <value> ± <value>i;

<value> can be either integer or double;

Examples:

com = complex(2.5, -3); -> com = 2.5 - 3.0i

or

com = 2.5 + 3i; -> com = 2.5 + 3.0i

Attributes for Complex type are given in the table below:

Call Signature Description
Return

Type

real Returns the real part. real

imaginary Returns the imaginary part. real

magnitude Returns the magnitude. real

angle Returns the phase angle. real

conjugate Returns the complex conjugate. complex

4.2.8 Quaternion

A variable, <var>, can be defined as quaternion by following ways:

<var> = quaternion(<value>,< value >,< value >,< value >)

or

<var> = <value> ± <value>i ± <value>j ± <value>k;

or

<var> = <value>i ± <value>j ± <value>k;

or

<var> = <value> ± <value>i ± <value>j;

or

<var> = <value> ± <value>i ± <value>k;

or

<var> = <value> ± <value>j ± <value>k;

or

<var> = <value> ± <value>j;

or

<var> = <value> ± <value>k;

or

<var> = <value>i ± <value>j;

or

<var> = <value>i ± <value>k;

or

<var> = <value>j ± <value>k;

<value> can be either integer or double;

Examples:

quat = quaternion (2.5, -3, 4, -1.2); -> quat = 2.5 - 3.0i + 4j -1.2k.

or

quat = 2.5 - 3.0i + 4j -1.2k;

Some components may be skipped as shown below:

quat = -3.0i + 4j -1.2k; -> quat = 0.0 - 3.0i + 4.0j -1.2k.

quat = 2.5 - 3.0i + 4j; -> quat = 2.5 - 3.0i + 4.0j + 0.0k.

quat = 2.5 - 3.0i + -1.2k; -> quat = 2.5 - 3.0i + 0.0j -1.2k.

quat = 2.5 + 4j -1.2k; -> quat = 2.5 + 0.0i + 4.0j -1.2k.

quat = 2.5 + 4j; -> quat = 2.5 + 0.0i + 4.0j + 0.0k.

quat = 2.5 -1.2k; -> quat = 2.5 + 0.0i + 0.0j -1.2k.

quat = -3.0i + 4j; -> quat = 0.0 - 3.0i + 4.0j + 0.0k.

quat = -3.0i -1.2k; -> quat = 0.0 - 3.0i + 0.0j -1.2k.

quat = 4j -1.2k; -> quat = 0.0 + 0.0i + 4.0j -1.2k.

Attributes for Quaternion type are given in the table below:

Call Signature Description
Return

Type

scalar Returns the scalar part. real

vector Returns the vector part. realVector

i Returns the i component of the vector part. real

j Returns the j component of the vector part. real

k Returns the k component of the vector part. real

norm Returns the norm. real

unit Returns the unit quaternion. quaternion

conjugate Returns the complex conjugate. quaternion

reciprocal Returns the reciprocal quaternion. quaternion

4.2.9 Polynomial

The type Polynomial represents a mathematical polynomial. A variable, <var>, can be defined

as polynomial by following ways:

<var> = polynomial(<coefficient>,<coefficient>, … ,<coefficient>)

or

<var> = #<coefficient>, <coefficient>, … , <coefficient>#;

<coefficient> can be either long or double, but the coefficients of the polynomial are always

double;

Examples:

A polynomial can be created using a constructor:

poly = polynomial(1.5, 2,1e-3)

will result in: 𝑝𝑜𝑙𝑦 = 1.5𝑥2 + 2𝑥 + 0.003

or using the polynomial operator, “#”.

poly = #1.5, 2, 1e-3#;

will result in: 𝑝𝑜𝑙𝑦 = 1.5𝑥2 + 2𝑥 + 0.003

or

poly = #1.5, 2, 1e-3, 4.5#;

will result in: 𝑝𝑜𝑙𝑦 = 1.5𝑥3 + 2𝑥2 + 0.003𝑥 + 4.5

Attributes for Polynomial type are given in the table below:

Call Signature Description
Return

Type

degree Returns the degree of the polynomial. integer

eval(integer x) Returns the value of the polynomial for the parameter x. real

eval(real x) Returns the value of the polynomial for the parameter x. real

eval(imaginary x) Returns the value of the polynomial for the parameter x. complex

coefficients Returns all the coefficients. realVector

coefficient(integer n) Returns coefficient corresponding to the power n. real

coefficient(real n) Returns coefficient corresponding to the power n. real

4.2.10 Rational

The type Rational represents a ratio of two polynomials. A variable, <var>, can be defined as

rational using a constructor:

<var> = rational(<polynomial_value>, <polynomial_value>)

or using division operator, “/”.

<var> = <polynomial_value>/<polynomial_value>;

Examples:

poly1 = #1, 2, 3#;

poly2 = #4, 5, 6, 7#;

rat = polynomial(poly1,poly2);

will result in: 𝑟𝑎𝑡 =
𝑥2+2𝑥+3

4𝑥3+5𝑥2+6𝑥+7

The same result can be achieved by

rat = poly1/poly2;

Attributes for Rational type are given in the table below:

Call Signature Description
Return

Type

num Returns the numerator. polynomial

den Returns the denominator. polynomial

eval(integer x) Returns the value of the polynomial for the parameter x. real

eval(real x) Returns the value of the polynomial for the parameter x. real

eval(imaginary x) Returns the value of the polynomial for the parameter x. complex

4.2.11 Range

The type range represents a sequence of equally spaced integers. A variable, <var>, can be

defined as a range by following ways:

<var> = range(<first>, <last>, <increment>);

or

<var> = range(<first>, <last>);

In this method, the increment is assumed to be 1.

or

<var> = range(<last>)

In this method, the first value of the sequence is assumed to be 0, and the increment is assumed

to be 1.

Example 1:

rng = range(10, 30, 5);

The statement above will produce the following sequence:

10, 15, 20, 25, 30

Example 2:

rng = range(10, 15);

The statement above will produce the following sequence:

10, 11, 12, 13, 14, 15

Example 3:

rng = range(5);

The statement above will produce the following sequence:

0, 1, 2, 3, 4, 5

Attributes for Quaternion type are given in the table below:

Call Signature Description
Return

Type

length Returns the length of the range. integer

first Returns the first element of the range. integer

last Returns the last element of the range. integer

incr Returns the increment value. integer

4.2.12 Vector

The type Vector represents a mathematical vector, as defined in Linear Algebra. There are five

subtypes of Vector: Real Vector, Complex Vector, Quaternion Vector, Polynomial Vector, and

Rational Vector.

Common attributes for all Vector type are given in the table below:

Call Signature Description
Return

Type

length Returns the length of the vector. integer

transpose Returns the transpose of the vector. matrix

4.2.12.1 Real Vector

The elements of a Real Vector are of type double.

A variable, <var>, can be defined as a vector by two different methods:

First method:

<var> = [<element>, <element>, … , <element>];

Example:

vec = [1.5, 2, 1e-3];

<element> can be either integer or real, but the vector elements are always real.

Second Method:

<var> = realVector(<element>,<element>, … ,<element>)

Example:

vec = realVector(1.5, 2, … ,1e-3)

Both methods will produce the following vector:

𝑣𝑒𝑐 = [
1.5
2.0
0.003

]

Attributes for Vector type are given in the table below:

Call Signature Description Return Type

norm Returns the norm of the vector. real

4.2.12.2 Complex Vector

The elements of a Complex Vector are of type complex. A variable, <var>, can be defined as a

complex vector by three different methods:

First Method:

<var> = [<element>, <element>, … , <element>];

If at least one <element> is of type Complex or Imaginary and all other <element>s are of type

Integer or Real, a Complex Vector will be produced using the parameters. Elements of type Real

are converted to complex numbers with zero imaginary parts, and elements of type Imaginary are

converted to complex numbers with zero real parts.

Example:

vec = [1.5 + 3i, 2 + 4.5i, 1e-3 + 1e-2i];

Second method:

<var> = complexVector(<element>, <element>, … , <element>)

If at least one parameter is of type Complex or Imaginary and all other parameters are of type

Integer or Real, a Complex Vector will be produced using the parameters. The <element>s are

of type complex. Elements of type Real are converted to complex numbers with zero imaginary

parts and elements of type Imaginary are converted to complex numbers with zero real parts.

Third method:

<var> = complexVector(<element1>,<element2>)

If <element1>,<element2> are vector of real values and have equal lengths, a Complex Vector

will be produced whose from the <element1> and <element2>. <element1> will provide the

real components and the <element2> will provide the imaginary components.

Attributes for Complex Vector type are given in the table below:

Call Signature Description Return Type

real Returns the real part. realVector

imaginary Returns the imaginary part. realVector

magnitude Returns the magnitude. realVector

angle Returns the phase angle. realVector

conjugate Returns the complex conjugate. complexVector

4.2.12.3 Quaternion Vector

The elements of a Quaternion Vector are of type quaternion. A variable, <var>, can be defined

as a quaternion vector by three different methods:

First Method:

<var> = [<element>, <element>, … , <element>];

If at least one <element> is of type Quaternion and rests of the <element>s are of type Long,

Double, Imaginary, or Complex, a Quaternion Vector will be produced using the parameters.

Elements of type other than Quaternion are converted to Quaternion.

Example:

vec = [1.5 + 3i + 2j + 1k, 2 + 4.5i + 1e-3j + 1e-2k];

Second method:

<var> = quaternion_realVector(<element>, <element>, … , <element>)

If at least one parameter is of type Quaternion and rests of the parameters are of type Long,

Double, Imaginary, or Complex, a Quaternion Vector will be produced using the parameters.

Elements of type other than Quaternion are converted to Quaternion.

Third method:

<var> = quaternionVector(<element1>,<element2>,<element3>,<element4>)

If <element1>,<element2>,<element3>,<element4> are vectors of real values and equal

lengths, a Quaternion Vector will be produced from the <element1>, <element2>,

<element3>, and <element4>. <element1> will provide the scalar components and the

<element2>, <element3>, and <element4> will provide the vector components.

Attributes for Quaternion Vector type are given in the table below:

Call Signature Description Return Type

scalar Returns the scalar part. realVector

i Returns the i component of the vector part. realVector

j Returns the j component of the vector part. realVector

k Returns the k component of the vector part. realVector

norm Returns the norm. realVector

unit Returns the unit quaternion. quaternionVector

conjugate Returns the complex conjugate. quaternionMatrix

reciprocal Returns the reciprocal quaternion. quaternionVector

4.2.12.4 Polynomial Vector

The elements of a Polynomial Vector are of type polynomial. A variable, <var>, can be defined

as a polynomial vector by two different methods:

First Method:

<var> = [<element>, <element>, … , <element>];

If all the <element>s are of type polynomial, a polynomial vector will be created.

Example:

vec = [#1,2,3# , #4,5,6#];

Second method:

<var> = polynomialVector(<element>, <element>, … , <element>)

If all the parameters are of type Polynomial, a Polynomial Vector will be produced using the

parameters.

Attributes for Polynomial Vector type are given in the table below:

Call Signature Description Return Type

degree Returns the degree of the polynomial. realVector

eval(integer x) Returns the value of the polynomial for the parameter x. realVector

eval(real x) Returns the value of the polynomial for the parameter x. realVector

eval(imaginary x) Returns the value of the polynomial for the parameter x. complexVector

4.2.12.5 Rational Vector

The elements of a Rational Vector are of type rational. A variable, var, can be defined as a

polynomial vector by two different methods:

First Method:

<var> = [<element>, <element>, … , <element>];

The <element>s are of type rational.

Example:

vec = [#1,2,3# / #4,5,6#, #11,12,13# / #14,15,16#];

Second method:

<var> = rationalVector(<element>, <element>, … , <element>)

If all the parameters are of type Rational, a Rational Vector will be produced using the

parameters.

Attributes for Rational Vector type are given in the table below:

Call Signature Description Return Type

num Returns the numerator. polynomialVector

den Returns the denominator. polynomialVector

eval(integer x) Returns the value of the polynomial for the parameter

x.
realVector

eval(real x) Returns the value of the polynomial for the parameter

x.
realVector

eval(imaginary x) Returns the value of the polynomial for the parameter

x.
complexVector

4.2.13 Matrix

The type Matrix represents a mathematical matrix, as defined in Linear Algebra. There are five

subtypes of Matrix: Real Matrix, Complex Matrix, Quaternion Matrix, Polynomial Matrix, and

Rational Matrix.

Accessing matrix elements:

The element at row i and column j of the matrix can be accessed by following way:

mat[i,j];

Contiguous elements from row r1 to r2 and from column c1 to c2 can be accessed by following

way:

mat[r1:r2, c1:c2]

Common attributes for all Matrix type are given in the table below:

Call Signature Description
Return

Type

rows Returns the number of rows of the matrix. integer

columns Returns the number of columns of the matrix. integer

transpose Returns the transpose of the vector. Matrix

isSquare Returns TRUE if the matrix is square, and returns FALSE otherwise. boolean

isSymmetric Returns TRUE if the matrix is symmetric, and returns FALSE otherwise. boolean

4.2.13.1 Real Matrix

The elements of a Real Matrix are of type Real. A variable, <var>, can be defined as Real

Matrix by three different methods.

First method:

<var> = | <element>, <element>, … , <element> |,

 | <element>, <element>, … , <element> |,

 .
 .
 .

 | <element>, <element>, … , <element> |, (3)

<element>s can be of type either Integer or Real, but the matrix elements types are always Real.

Example:

The matrix from the second method can be created by the following way:

mat = |1.5, 4.7, 7.3 |,

 |2.0, 5.0, 8.22|,

 |1e-3, 6.0, 9.0 |;

Will result in the following the matrix:

𝑚𝑎𝑡 = [
1.5 4.7 7.3
2.0 5.0 8.22
0.003 6.0 9.0

]

Second Method:

<var> = realMatrix(<numRow>,<numColumn>
<element>,<element>, … ,<element>) (1)

<numRow> and <numColumn> are number or rows and the number columns in the matrix. The

total number of elements (TNOE) equals to <numRow> times < numColumn>.

If there are no other parameters, all the elements in the matrix will be initialized to zeros. If a

third parameter, <element>, of type Integer or Real is provided, all the elements in the matrix

will be initialized to the value of the third parameter. If more than one <element> are provided,

these <element>s will be used in an attempt to fill the matrix. If the number of <element>s

(NOE) is equal to TNOE, the matrix will be filled exactly. If NOE is less than TNOE, the rest of

the elements will be set to zero. If the NOE is greater than TNOE, the excess <element>s will

be ignored.

Example:

mat = realMatrix(2, 3, 1, 2.0, 3.5, 4, 5, 6)

Will result in the following matrix:

𝑚𝑎𝑡 = [
1.0 2.0 3.5
4.0 5.0 6.0

]

Third Method:

<var> = realMatrix(<realVector_value>,< realVector _value>
, … ,< realVector _value>) (2)

<realVector_value>s are of type Vector. All <realVector_value>s must have the same

length. Vectors are represented as columns of the matrix. Any number of

<realVector_value>s can be provided.

Example:

Vec1 = realVector(1.5, 2, … ,1e-3)

Vec2 = [4.7, 5, 6];

Vec3 = [7.3, 8.22, 9.0];

mat = realMatrix(vec1, vec2, vec3)

Will result in the following the matrix:

𝑚𝑎𝑡 = [
1.5 4.7 7.3
2.0 5.0 8.22
0.003 6.0 9.0

]

Accessing matrix elements:

Examples:

mat[2,3] -> 8.22

mat[2:3, 2:3] -> [
𝟓. 𝟎 𝟖. 𝟐𝟐
𝟔. 𝟎 𝟗. 𝟐𝟐

]

The number of rows of a matrix can be obtained as follows:

mat.numrows -> 3

Similarly, the number of columns of a matrix can be obtained as follows:

mat.numcolumns -> 3

For the matrix form the examples of methods 2 and 3, the values would be 3 and 3.

4.2.13.2 Complex Matrix

The elements of a Complex Matrix are of type complex. A variable, <var>, can be defined as

Complex Matrix by four different methods.

First method:

<var> = | <element>, <element>, … , <element> |,

 | <element>, <element>, … , <element> |,

 .
 .
 .

 | <element>, <element>, … , <element> |

<element>s can be of type Integer, Real, Imaginary or Complex, but if at least one of the

<element>s is of type Complex, all the matrix elements will be of type Complex.

Example:

The matrix from the second method can be created by the following way:

mat = |1.5+i, 4.7+1.5i, 7.3 |,

 | 2, 5i, 8.22+0.3i|,

 |1e-3i, 6+2i, 9 |;

Will result in the following the matrix:

𝑚𝑎𝑡 = [
1.5 + 𝑖 4.7 + 1.5𝑖 7.3
2.0 5.0𝑖 8.22 + 0.3𝑖

0.003𝑖 6.0 + 2𝑖 9.0
]

Second method:

<var> = complexMatrix (<numRow>,<numColumn>
<element>,<element>, … ,<element>) (1)

<numRow> and <numColumn> are number or rows and the number columns in the matrix. The

total number of elements (TNOE) equals to <numRow> times < numColumn>.

If there are no other parameters, all the elements in the matrix will be initialized to complex

numbers, whose real and imaginary parts are zeros. If a third parameter, <element>, of type

Integer, Real, Imaginary or Complex is provided; all the elements in the matrix will be initialized

to the value of the third parameter. If more than one <element> are provided, these <element>s

will be used in an attempt to fill the matrix. If the number of <element>s (NOE) is equal to

TNOE, the matrix will be filled exactly. If NOE is less than TNOE, the rest of the elements will

be set to complex numbers, whose real and imaginary parts are zeros. If the NOE is greater than

TNOE, the excess <element>s will be ignored.

Example:

mat = complexMatrix (2, 3, 1+2i, 2.0+4i, 0.5i, 4+i, 5+2.5i, 6)

Will result in the following matrix:

𝑚𝑎𝑡 = [
1.0 + 2𝑖 2.0 + 4𝑖 0.5𝑖
4.0 + 𝑖 5.0 + 2.5𝑖 6.0

]

Third Method:

<var> = complexMatrix (<complexVector>,<complexVector>
, … ,<complexVector>) (2)

<complexVector>s are of type Complex Vector. All <complexVector>s must have the same

length. Vectors are represented as columns of the matrix. Any number of <complexVector>s

can be provided.

Example:

Vec1 = complexVector(1.5+i, 2, … ,1e-3+0.1i)

Vec2 = [4.7+1.5i, 5i, 6+2i];

Vec3 = [7.3, 8.22+0.3i, 9i];

mat = complexMatrix (vec1, vec2, vec3)

Will result in the following the matrix:

𝑚𝑎𝑡 = [
1.5 + 𝑖 4.7 + 1.5𝑖 7.3
2.0 5.0𝑖 8.22 + 0.3𝑖

0.003𝑖 6.0 + 2𝑖 9.0𝑖
]

Fourth Method:

<varR> = | <real_element>, < real_element>, … , < real_element> |,

 | < real_element>, < real_element>, … , < real_element> |,

 .
 .
 .

 | < real_element>, < real_element>, … , < real_element> |

<varI> = | <real_element>, < real_element>, … , < real_element> |,

 | < real_element>, < real_element>, … , < real_element> |,

 .
 .
 .

 | < real_element>, < real_element>, … , < real_element> |

<var> = complexMatrix (<varR>, <varI>);

Example:

matR = |1.5, 4.7, 7.3 |,

 | 2, 0, 8.22|,

 | 0, 6, 9 |;

matI = | 1, 1.5, 0|,

 | 0, 5, 0.3|,

 |1e-3, 2, 0|;

mat = complexMatrix (matR, matI);

Will result in the following the matrix:

𝑚𝑎𝑡 = [
1.5 + 𝑖 4.7 + 1.5𝑖 7.3
2.0 5.0𝑖 8.22 + 0.3𝑖

0.003𝑖 6.0 + 2𝑖 9.0𝑖
]

Attributes for Complex type are given in the table below:

Call Signature Description Return Type

real Returns the real part. realMatrix

imaginary Returns the imaginary part. realMatrix

magnitude Returns the magnitude. realMatrix

angle Returns the phase angle. realMatrix

conjugate Returns the complex conjugate. complexMatrix

4.2.13.3 Quaternion Matrix

The elements of a Quaternion Matrix are of type quaternion. A variable, <var>, can be defined

as Quaternion Matrix by four different methods.

First method:

<var> = | <element>, <element>, … , <element> |,

 | <element>, <element>, … , <element> |,

 .
 .
 .

 | <element>, <element>, … , <element> | (3)

<element>s can be of type Long, Double, Imaginary, Complex or Quaternion, but if at least one

of the <element>s is of type Quaternion, all the matrix elements will be of type Quaternion.

Example:

The matrix from the second method can be created by the following way:

mat = |1.5+i+2j+3.5k, 4.7+1.5i, 7.3 |,

 | 2, 5i, 8.22+0.3i|,

 | 1e-3i, 6+2i, 9+k |;

Will result in the following the matrix:

𝑚𝑎𝑡 = [
1.5 + 𝑖 + 2𝑗 + 3.5𝑘 4.7 + 1.5𝑖 7.3

2.0 5.0𝑖 8.22 + 0.3𝑖
0.003𝑖 6.0 + 2𝑖 9.0 + 0𝑖 + 0𝑗 + 𝑘

]

Second method:

<var> = quaternionMatrix(<numRow>,<numColumn>
<element>,<element>, … ,<element>) (1)

<numRow> and <numColumn> are number or rows and the number columns in the matrix. The

total number of elements (TNOE) equals to <numRow> times < numColumn>.

If there are no other parameters, all the elements in the matrix will be initialized to complex

numbers, whose real and imaginary parts are zeros. If a third parameter, <element>, of type

Integer, Real, Imaginary, Complex or Quaternion is provided; all the elements in the matrix will

be initialized to the value of the third parameter. If more than one <element> are provided,

these <element>s will be used in an attempt to fill the matrix. If the number of <element>s

(NOE) is equal to TNOE, the matrix will be filled exactly. If NOE is less than TNOE, the rest of

the elements will be set to quaternions, whose scalar and vector parts are zeros. If the NOE is

greater than TNOE, the excess <element>s will be ignored.

Example:

mat = quaternionMatrix(2, 3, 1+2i+3j+4k, 2.0+4j, 0.5i, 4+3k, 5+2.5i, 6)

Will result in the following matrix:

𝑚𝑎𝑡 = [
1.0 + 2𝑖 + 3𝑗 + 4𝑘 2.0 + 0𝑖 + 4𝑗 + 0𝑘 0.5𝑖
4.0 + 0𝑖 + 0𝑗 + 3𝑘 5.0 + 2.5𝑖 6.0

]

Third Method:

<var> = quaternionMatrix(<quaternion_realVector>,<
quaternion_realVector>

, … ,< quaternion_realVector>) (2)

<complexVector>s are of type vector defined previously. All <complexVector>s must have the

same length. Vectors are represented as columns of the matrix. Any number of

<complexVector>s can be provided.

Example:

Vec1 = quaternion_realVector(1.5+i+2j+3.5k, 2, … ,1e-3+0.1i)

Vec2 = [4.7+1.5i, 5i, 6+2i];

Vec3 = [7.3, 8.22+0.3i, 9+k];

mat = quaternionMatrix(vec1, vec2, vec3)

Will result in the following the matrix:

𝑚𝑎𝑡 = [
1.5 + 𝑖 + 2𝑗 + 3.5𝑘 4.7 + 1.5𝑖 7.3

2.0 5.0𝑖 8.22 + 0.3𝑖
0.003𝑖 6.0 + 2𝑖 9.0 + 0𝑖 + 0𝑗 + 𝑘

]

Fourth Method:

<varS> = | <real_element>, < real_element>, … , < real_element> |,

 | < real_element>, < real_element>, … , < real_element> |,

 .
 .
 .

 | < real_element>, < real_element>, … , < real_element> |

<varI> = | <real_element>, < real_element>, … , < real_element> |,

 | < real_element>, < real_element>, … , < real_element> |,

 .
 .
 .

 | < real_element>, < real_element>, … , < real_element> |

<varJ> = | <real_element>, < real_element>, … , < real_element> |,

 | < real_element>, < real_element>, … , < real_element> |,

 .
 .
 .

 | < real_element>, < real_element>, … , < real_element> |

<varK> = | <real_element>, < real_element>, … , < real_element> |,

 | < real_element>, < real_element>, … , < real_element> |,

 .
 .
 .

 | < real_element>, < real_element>, … , < real_element> |

<var> = quaternionMatrix(<varS>, <varI>, <varJ>, <varK>);

Example:

matS = |1.5, 4.7, 7.3 |,

 | 2, 0, 8.22|,

 | 0, 6, 9 |;

matI = | 1, 1.5, 0|,

 | 0, 5, 0.3|,

 |1e-3, 2, 0|;

matJ = | 2, 0, 0|,

 | 0, 0, 0|,

 | 0, 0, 0|;

matK = |3.5, 0, 0|,

 | 0, 0, 0|,

 | 0, 0, 1|;

mat = quaternionMatrix(matS, matI, matj, matK);

Will result in the following the matrix:

𝑚𝑎𝑡 = [
1.5 + 𝑖 + 2𝑗 + 3.5𝑘 4.7 + 1.5𝑖 7.3

2.0 5.0𝑖 8.22 + 0.3𝑖
0.003𝑖 6.0 + 2𝑖 9.0 + 0𝑖 + 0𝑗 + 𝑘

]

Attributes for Quaternion Matrix type are given in the table below:

Call Signature Description Return Type

scalar Returns the scalar part. realMatrix

i Returns the i component of the vector part. realMatrix

j Returns the j component of the vector part. realMatrix

k Returns the k component of the vector part. realMatrix

norm Returns the norm. realMatrix

unit Returns the unit quaternion. quaternionMatrix

conjugate Returns the complex conjugate. quaternionMatrix

reciprocal Returns the reciprocal quaternion. quaternionMatrix

4.2.13.4 Polynomial Matrix

The elements of a Polynomial Matrix are of type polynomial. A variable, <var>, can be defined

as Polynomial Matrix by three different methods.

First method:

<var> = | <element>, <element>, … , <element> |,

 | <element>, <element>, … , <element> |,

 .
 .
 .

 | <element>, <element>, … , <element> |

If all the <element>s are of type polynomial, a polynomial matrix will be created.

Example:

mat = | #1,2#, #3,4#|,

 |#1,2,3#, #5,6,7#|

Will result in the following the matrix:

𝑚𝑎𝑡 = [
𝑥 + 2 3𝑥 + 4

𝑥2 + 2𝑥 + 3 5𝑥2 + 6𝑥 + 7
]

Second Method:

<var> = polynomialMatrix(<numRow>,<numColumn>
<element>,<element>, … ,<element>) (1)

<numRow> and <numColumn> are number or rows and the number columns in the matrix. The

total number of elements (TNOE) equals to <numRow> times < numColumn>.

If there are no other parameters, all the elements in the matrix will be initialized to polynomials

with a single coefficient of zero value. If a third parameter, <element>, of type Polynomial is

provided, all the elements in the matrix will be initialized to the value of the third parameter. If

more than one <element> are provided, these <element>s will be used in an attempt to fill the

matrix. If the number of <element>s (NOE) is equal to TNOE, the matrix will be filled exactly.

If NOE is less than TNOE, the rest of the elements will be set to polynomials with a single

coefficient of zero value. If the NOE is greater than TNOE, the excess <element>s will be

ignored.

Example:

mat = polynomialMatrix(2, 3, #1#, #1,2,3#, #1,2,3,4#, #1,2,3,4,5#,

#1,2,3,4,5,6#, #1,2,3,4,5,6,7#)

Will result in the following matrix:

𝑚𝑎𝑡 = [1 𝑥 + 2 𝑥2 + 2𝑥 + 3
𝑥3 + 2𝑥2 + 3𝑥 + 4 𝑥4 + 2𝑥3 + 3𝑥2 + 4𝑥 + 5 𝑥5 + 2𝑥4 + 3𝑥3 + 4𝑥2 + 5𝑥 + 6

]

Third Method:

<var> = polynomialMatrix
(<polynomial_realVector>,<polynomial_realVector>

, … ,<polynomial_realVector>) (2)

< polynomial_realVector>s are of type Polynomial Vector. All <polynomial_realVector>s

must have the same length. Vectors are represented as columns of the matrix. Any number of

<polynomial_realVector>s can be provided.

Example:

Vec1 = realVector(#1,2#, #1,2,3#)

Vec2 = [#1,2,3#, #1,2,3,4#];

mat = polynomialMatrix(vec1, vec2)

Will result in the following the matrix:

𝑚𝑎𝑡 = [𝑥 + 2 𝑥2 + 2𝑥 + 3
𝑥2 + 2𝑥 + 3 𝑥3 + 2𝑥2 + 3𝑥 + 4

]

Attributes for Polynomial Matrix type are given in the table below:

Call Signature Description Return Type

degree Returns the degree of the polynomial. realMatrix

eval(integer x) Returns the value of the polynomial for the parameter x. realMatrix

eval(real x) Returns the value of the polynomial for the parameter x. realMatrix

eval(imaginary x) Returns the value of the polynomial for the parameter x. complexMatrix

4.2.13.5 Rational Matrix

The elements of a Rational Matrix are of type rational. A variable, <var>, can be defined as

Rational Matrix by four different methods.

First method:

<var> = | <element>, <element>, … , <element> |,

 | <element>, <element>, … , <element> |,

 .
 .
 .

 | <element>, <element>, … , <element> |, (3)

If all the <element>s are of type Rational, a rational matrix will be created.

Example:

The matrix from the second method can be created by the following way:

mat = |#1,2#/#1,2,3#, #3,4#/#5,6,7#|,

 |#11,12#/#11,21,13#, #13,14#/#15,16,17#|

Will result in the following the matrix:

𝑚𝑎𝑡 = [

𝑥 + 2

𝑥2 + 2𝑥 + 3

3𝑥 + 4

5𝑥2 + 6𝑥 + 7
11𝑥 + 12

11𝑥2 + 12𝑥 + 3

13𝑥 + 14

15𝑥2 + 16𝑥 + 17

]

Second Method:

<var> = rational_matrix(<numRow>,<numColumn>
<element>,<element>, … ,<element>) (1)

<numRow> and <numColumn> are number or rows and the number columns in the matrix. The

total number of elements (TNOE) equals to <numRow> times < numColumn>.

If there are no other parameters, all the elements in the matrix will be initialized rationals with

the numerators and the denominators consist of polynomial with a single coefficient of zero

value. If a third parameter, <element>, of type Rational is provided, all the elements in the

matrix will be initialized to the value of the third parameter. If more than one <element> are

provided, these <element>s will be used in an attempt to fill the matrix. If the number of

<element>s (NOE) is equal to TNOE, the matrix will be filled exactly. If NOE is less than

TNOE, the rest of the elements will be set to rationals with the numerators and the denominators

consist of polynomial with a single coefficient of zero value. If the NOE is greater than TNOE,

the excess <element>s will be ignored.

Example:

mat = rational_matrix(2, 2, #1#/#1,2,3#, #1,2,3#/#1,2,3,4#,

#11#/#11,12,13#, #11,12,13#/#11,12,13,14#,)

Will result in the following matrix:

𝑚𝑎𝑡 = [

1

𝑥 + 2

𝑥 + 2

𝑥2 + 2𝑥 + 3
11

11𝑥 + 12

11𝑥 + 12

11𝑥2 + 12𝑥 + 13

]

Third Method:

<var> = rational_matrix (<rational_realVector>,<rational_realVector>
, … ,<rational_realVector>) (2)

<rational_realVector>s are of type Polynomial Vector. All <polynomial_realVector>s

must have the same length. Vectors are represented as columns of the matrix. Any number of

<rational_realVector>s can be provided.

Example:

Vec1 = rational_realVector(#1#/#1,2#, #11#/#11,12#)

Vec2 = [#1,2#/#1,2,3#, #11,12#/#11,12,13#];

mat = rational_matrix(vec1, vec2)

Will result in the following the matrix:

𝑚𝑎𝑡 = [

1

𝑥 + 2

𝑥 + 2

𝑥2 + 2𝑥 + 3
11

11𝑥 + 12

11𝑥 + 12

11𝑥2 + 12𝑥 + 13

]

Fourth Method:

<var> = rational_matrix
(<numerator_polynomialMatrix>,<denominarot_polynomialMatrix>)

All the elements in the <numerator_polynomialMatrix> and

<denominarot_polynomialMatrix must be of type Polynomial.

Example:

num = | #1#, #1,2#|,

 |#11#, #11,12#|;

den = | #1,2#, #1,1,3#|,

 |#11,12#, #11,12,13#|;

mat = rational_matrix(num,den)

Will result in the following the matrix:

𝑚𝑎𝑡 = [

1

𝑥 + 2

𝑥 + 2

𝑥2 + 2𝑥 + 3
11

11𝑥 + 12

11𝑥 + 12

11𝑥2 + 12𝑥 + 13

]

Attributes for Rational Matrix type are given in the table below:

Call Signature Description Return Type

num Returns the numerator. polynomialMatrix

den Returns the denominator. polynomialMatrix

eval(integer x) Returns the value of the polynomial for the

parameter x.
realMatrix

eval(real x) Returns the value of the polynomial for the

parameter x.
realMatrix

eval(imaginary x) Returns the value of the polynomial for the

parameter x.
complexMatrix

4.2.14 Array

A variable, <var>, can be defined as an array by following ways:

<var> = {<element>, < element >, …, < element >};

<element> can be of any type, and several types can be mixed. Elements of an array can be

accessed by specifying indices of the elements in an index operator ([]). The indices start at 1.

Consecutive elements can be accessed by using a range operator (:) with the fist and the last

indices of interest.

a[<index>] -> element value

a[<index_start>:<index_end>]-> element values.

Values of specific elements can be assigned by using indices and range operator in the similar

manner as in accessing element values.

a[<index>] = element value

a[<index_start>:<index_end>] = element values.

Examples:

Array definitions:

a = {1, 2.5, 3.0, true, ‘c’, “abc”,…};

Accessing element values

a[1] -> 1

a[4] -> true.

a[1:3] -> 1, 2.5, 3.0

Assigning element values:

a[2] = 2.5;

4.2.15 Table

Tables are two dimensional arrays.

Examples:

tbl = {{‘a’, “abc”},{2, 3.5}};

4.3 Statements

4.3.1 Expression

Logical expressions can be created by combining any of the logical operators.

Example:

l = (a > b || c < d) && (e != 0 && f==1)

Algebraic expressions can be created by combining any of mathematical operators or functions.

A list of available functions will be presented later in the document.

Example:

x = (a*b) + c*d^2 – e/f + abs(y);

The mathematical operators can operate on multiple data types. The table below provides a list

of the valid operators, their descriptions, and the valid left and right operands types for each

operator.

Operator Operation Left Operand Data Types Right Operand Data

Types
"+" Plus Integer, real, imaginary, complex,

quaternion, polynomial, rational,

real vector, real matrix

Integer, real, imaginary, complex,

quaternion, polynomial, rational,

real vector, real matrix

"-" Minus Integer, real, imaginary, complex,

quaternion, polynomial, rational,

real vector, real matrix

Integer, real, imaginary, complex,

quaternion, polynomial, rational,

real vector, real matrix

"*" Multiply Integer, real, imaginary, complex,

quaternion, polynomial, rational,

real vector, real matrix

Integer, real, imaginary, complex,

quaternion, polynomial, rational,

real vector, real matrix

"/" Divide Integer, real, imaginary, complex,

quaternion, polynomial, rational,

Integer, real

real vector, real matrix complex,

quaternion, polynomial

"^" Exponent Integer, real, imaginary, complex,

quaternion, polynomial, rational,

real vector, real matrix

Integer, real

"%" Remainder Integer, real Integer, real

":" Range Integer, real Integer, real

The Range operator (:) can be used to access elements of an array, vector or a matrix. A range

of numbers from a to b with increments of 1 is expressed as a:b. And a range of numbers from a

to b with increments of c is expressed as a:c:b.

Examples:

1:10 -> 1, 2, 3, 4, 5 ,6, 7, 8, 9, 10

1:0.5:3.5 -> 1.0, 1.5, 2.0, 2.5, 3.0, 3.5

4.3.2 Control Flow Statements

4.3.2.1 If Statement

The syntax for creating if statement is:

if (<logical expression>)

{

 <Statements>

}

or

if (<logical expression>)

{

 <Statements>

}

else

{

 <Statements>

}

or

if (<logical expression>)

{

 <Statements>

}

else if (<logical expression>)

{

 <Statements>

}

 .
 .
 .

else

{

 <Statements>

}

Example:

a = 10;

b = 5;

if (a < b)

{

 print("a less than b")

}

else if (a > b)

{

 print("a greater than b")

}

else

{

 print("a equal to b")

}

4.3.2.2 Switch Statement

The syntax for creating switch statement is:

switch (variable_to_test)

{

 case value

 {

 <statements>

 break;

 }

 case value

 {

 <statements>

 break;

 }

 .
 .
 .

 default

 {

 <statements>

 }

}

Example:

a = 2;

switch(a)

{

 case 1

 {

 b=2

 break

 }

 case 2

 {

 b=3

 break

 }

 case 3

 {

 b=4;

 break

 }

 default

 {

 b=5;

 }

}

4.3.2.3 For Loop

The syntax for creating for loop is:

for <index> in <list>

{

 <statements>

}

Examples:

week = {“Monday”, “Tuesday”, “Wednesday”, “Thursday”, “Friday”,

“Saturday”, “Sunday”};

for i in week

{

 print(i);

}

for i in -5.0:0.5:5.0

{

 print(i);

}

for i in 1:numOfPoints_x

{

 for j in 1:numOfPoints_y

 {

 R = sqrt(x[i]^2 + y[j]^2) + 1.0e-12;

 z[i,j] = sin(R)/(R*0.1) + 1.0;

 }

}

4.3.2.4 Loop

The loop statement can be used two different ways:

1. Infinite loop with a break statement inside the loop.

2. A loop with a termination condition.

The syntax for creating the infinite loop is:

loop

{

 <statements>

 break;

}

If the break statement not used the loop will run forever.

The syntax for creating loop is:

loop

{

 <statements>

}

while(<logical expression>)

Example:

i = 0;

loop

{

 print(i);

 I = i+1;

 if (i==10) break;

}

Example:

i = 0;

loop

{

 print(i);

 I = i+1;

}

while (i < 10);

4.3.2.5 While Loop

The syntax for creating while loop is:

while(<logical expression>)

{

 <statements>

}

Example:

i = 0;

while (i < 10)

{

 print(i);

 i = i+1;

}

4.3.3 Try Catch Finally Statements

The syntax for try/catch/finally statement has three different forms. The simplest one

consists of a single try and a catch block, as below:

try

{

 <Statements>

}

catch (Exception)

{

 <Statements>

}

Multiple catch blocks can be added to a single try block, as below:

try

{

 <Statements>

}

catch (<Exception>)

{

 <Statements>

}

 .
 .
 .

catch (<Exception>)

{

 <Statements>

}

An optional finally block can be added:

try

{

 <Statements>

}

catch (<Exception>)

{

 <Statements>

}

 .
 .
 .

catch (<Exception>)

{

 <Statements>

}

finally

{

 <Statements>

}

4.4 Functions

4.4.1 Declaration

The syntax for function declaration is:

function <identifier> (<type> <identifier>, … ,

<type> <identifier>)

{

 statements

}

or

function <identifier> (<type> <identifier>, … ,

<type> <identifier>)

{

 statements

 return_statement

}

or

function <identifier> (<type> <identifier>, … ,

<type> <identifier> = <default_value>, …)

{

 statements

}

or

function <identifier> (<type> <identifier>, … ,

<type> <identifier> = <default_value>, …)

{

 statements

 return_statement

}

The symbol (…) in the parameter list indicates optional repetition of the pattern. The parameter

list can optionally have default values. If values for these parameters are not provided during a

function call, the default values are used. Hyper supports function overloading. Two or more

functions can have the same function name if they have different parameters. In this case, the

function whose parameters match the calling parameters will be executed.

Local variables can be defined anywhere in the function. If a local variable is defined using a

name that is also a name of a global variable, the local variable will shadow the global variable.

The return statement is optional. If return statement is not used, the function behaves a

procedure. Hyper functions can return multiple values. To return multiple values, the return

values need to be put in an array and return the array.

Examples:

function display(real x)

{

 print(x);

}

function abc(integer x)

{

 return x*2;

}

function abc(integer x, integer y)

{

 return x*y;

}

function abc(real x, real y=2.0)

{

 return x/y;

}

function abc(real a, real b, real c)

{

 return {a*2, b*2, c*2};

}

4.4.2 Call

The syntax for function call is:

<function identifier>(<value>, <value>,…<value>);

or

<variable> = <function identifier>(<value>, <value>,…<value>);

or

(<variable>, <variable>, … ,<variable>)

 = <function identifier>(<value>, <value>,…<value>);

Examples:

t_int = abc(2);

print(t_integer);

t_int_int = abc(7,2);

print(t_int_int);

t_real = abc(4.0);

print (t_real);

t_no_default = abc(27.0,6.0);

print(t_no_default);

t_default = abc(27.0);

print(t_default);

inv_m1 = inv(m1);

(eigvec_m1, eigval_m1) = eigen(m1);

The last example shows multiple return values.

4.5 Class

A class is declared in the following way:

class <identifier>

{

 class statements;

}

or

class <identifier>

(<inherited class identifier>, … , <inherited class identifier>)

{

 class statements;

}

Examples:

class Point2D

{

 a = 10;

 this.b = 5;

 function Point2D()

 {

 }

 function Point2D(real x)

 {

 this.x = x;

 }

 function Point2D(real x, real y)

 {

 this.x = x;

 this.y = y;

 }

 function setA()

 {

 Point2D.a=15;

 }

 function setBA(real b1, real a1)

 {

 this.b = b1;

 Point2D.a = a1;

 }

}

The keyword this indicates that it is an object variable whose value can differ for each instance

of the object. If a variable is declared without the this keyword, the variable will be a class

variable, and its value will be the same in all instances of the class.

4.6 Import

4.6.1 Import Script

import <module_name>, … , <module_name>,

4.6.2 Import Java

import_java_class(<java_class_path>, … , < java_class_path >)

Examples:

lib_math = import_java_class("java.lang.Math")

lib_basic = import_java_class("library.Basic")

5 Class Libraries

Related Hyper library functions are grouped together and implemented using Java classes. One

of the advantages using classes is that a primitive operation can be performed ones and multiple

higher-level operations can be done subsequently without re invoking the primitive operation.

For example, in linear algebra, to compute determinant, trace, inverse, or a solution, a LUP

decomposition of a matrix need to be performed. Once a matrix is decomposed, determinant,

trace, inverse, or a solution can be computed without re performing the decomposition. Another

advantage of using class is that one can have multiple instances of the same class with different

attributes. For example, we can have two different instances of the class Integrator or ODE

Solver with two different step sizes or integration schemes. In some cases, a library consists of

several classes. In these cases, there is a class that contains the constituent classes. The

following outline illustrates the organizational structure of the libraries.

1. General Math

2. Linear Algebra

a. Utility

b. Linear Equations

c. Linear Least Square

d. Eigen

e. Singular Value

3. Zero Min Max

a. Root Finder

b. Optimization

4. Analysis

a. Differentiation

b. Integration

c. Ordinary Differential Equation

5. Estimation

a. Interpolation

b. Curve Fit

6. Stochastic

a. Statistics

i. Histogram

b. Probability

i. Uniform Distribution

ii. Triangular Distribution

iii. Normal Distribution

iv. Log Normal Distribution

v. Student Distribution

vi. Gamma Distribution

vii. Chi-Squared Distribution

viii. Exponential Distribution

ix. Laplace Distribution

x. Beta Distribution

xi. Fisher Snedecor Distribution

xii. Fisher Tippett Distribution

xiii. Weibull Distribution

xiv. Cauchy Distribution

xv. Histogrammed Distribution

xvi. All Distribution

7. Frequency Domain

a. FFT

The functions in the libraries are accessed by first importing the library then calling a function in

the library using a dot notation. A library can be imported using a command of the following

format:

<pointer> = import_java_class(<class path>")

A function in the library can be called using the following format:

<var> = <pointer>.<function_name>(<param>, <param>, … <param>,)

Example:

The determinant of a matrix can be computed the following way:

linEqn = import_java_class("library.linear_algebra.LinearEquations");

det = lib_la.determinant(mat);

where, linEqn is the pointer to the library, library.linear_algebra.LinearEquations is the

class path, determinant is the name of the function, mat is a variable of type Real Matrix, and

det is variable of type Real.

The library class paths and the function call signature, descriptions, and return types are

documented in Appendices A – H. Descriptions of the libraries are presented in the sections

below.

5.1 General Math

The General Math library contains functions that are normally found with any programming

language such as Java. The functions in this library include absolutes value function,

trigonometric and hyperbolic functions etc. A complete list of the functions can be found in

Appendix A. Some of these functions are overloaded for various types such as Integer, Real,

Vector, and Matrix.

5.2 Linear Algebra

The Linear Algebra library composed of five classes: All, Linear Equations class, Linear Least

Square class, Singular Value class, and Eigen class. Each of these classes is described below.

5.2.1 Utility

The Utility class contains methods for creating various types of vectors and matrices, accessing

their attributes, and performing operations specific to vectors and matrices. All the functions

contained in the Utility class are listed in the Appendix B.

5.2.2 Linear Equations

The Linear Equations class contains methods for solving linear equations of number equal to the

number of unknowns. These equations are transformed in the following form:

𝑨𝒙 = 𝒃

Where A is a square matrix of size nxn, represents n equations and n unknowns. x is a column

vector of n unknowns, and b is a column vector of n inhomogeneous terms. A is called the

coefficient matrix. Gaussian Elimination method is used to factorize the matrix A into three

matrices: Lower Triangular (L), Upper Triangular (U), and Permutation (P). Hence, it’s called

LUP factorization. The matrix A can be LUP factorized by calling the function decompose.

Once A is LUP factorized, various other operations such as computing determinant and inverse

can be performed by calling functions such as determinant and inverse. All the functions

contained in the Linear Equation class are listed in the Appendix B. The example below shows

how to use this class.

 Example:

linEqn = import_java_class("library.linear_algebra.LinearEquations")

The statement above imports the Linear Equation class and assigns to the pointer linEqn.

A = |3.0, -0.1, -0.2|,

 |0.1, 7, -0.3|,

 |0.3, -0.2, 10.0|

The statement above creates a 3x3 real matrix and assigns to the variable A.

b = [7.85, -19.3, 71.4];

The statement above creates a column vector and assigns to the variable b.

linEqn.decomposeLUP(A);

The statement above performs LUP factorization of the matrix A.

(l, u ,p) = linEqn.lup()

The statement above assigns the computed L, U, and P matrices to the variables l, u, and p.

Alternately,

l = linEqn.lower()

The statement above assigns the computed L matrix to the variable l.

u = linEqn.upper()

The statement above assigns the computed U matrix to the variable u.

p = linEqn.permutation()

The statement above assigns the computed P matrix to the variable p.

det = linEqn.determinant();

The statement above computes the determinant of the matrix A and assigns it to the variable det.

tr = linEqn.trace();

The statement above computes the trace of the matrix A and assigns it to the variable tr.

inv = linEqn.inverse();

The statement above command above computes the inverse matrix of A and assigns it to the

variable inv.

solb = linEqn.solve(b);

The statement above computes the solution corresponding the inhomogeneous terms column b

and assigns it to the variable solb. Note that to compute solution for another inhomogeneous

terms column, say c, the coefficient matrix A does not need to be factorized again. The solution

can be obtained simply using the following statement:

solc = linEqn.solve(c);

The solutions for both inhomogeneous terms columns can also be computed using a single call

by combining c and d into a matrix (bc) and passing this matrix as a parameter as in the

following statements:

bc = realMatrix(b,c);

solbc = linEqn.solve(bc);

Note: For each of the function call above, the matrix A can be passed in as a parameter. In this

case, A will be factorized for each function call.

5.2.3 Linear Least Squares

The Linear Least Squares class contains methods for solving linear equations, where the number

of equations are not equal to the number of unknowns.

When the number of equations is greater than the number of unknowns, it is called an

overdetermined system. Linear least square is the problem of approximately solving an

overdetermined system of linear equations, where the best approximation is defined as that

which minimizes the sum of squared differences between the data values and their corresponding

modeled values. The approach is called "linear" least squares since the assumed function is linear

in the parameters to be estimated.

Let 𝑨𝒙 = 𝒃 be an overdetermined linear equation. Where A is an mxn matrix with m > n. If b is

not in the column space of A, the system is inconsistent and the equation cannot be solved for x.

In this case, a least-squares solution can be found by minimizing

‖𝑨𝒙 − 𝒃‖ = (∑(∑𝑎𝑖𝑗𝑥𝑗 − 𝑏𝑖

𝑛

𝑗=1

)

2
𝑚

𝑖=1

)

1/2

𝒓 = 𝑨𝒙 − 𝒃 is called the residual or error. x with the smallest residual norm ‖𝒓‖ is called the

least-squares solution, which is equivalent to minimizing ‖𝑨𝒙 − 𝒃‖2. All the functions contained

in the Linear Least Squares class are listed in the Appendix B.

 Example:

linLS = import_java_class("library.linear_algebra.LinearLeastSquare");

The statement above imports the Linear Equation class and assigns to the pointer linLS.

A = |-2, 1|,

 |-1, 1|,

 | 1, 1|,

 | 2, 1|,

 | 1, 2|;

The statement above creates a 5x2 real matrix and assigns to the variable A.

b = [0, 1, 2, 2, 3];

The statement above creates a column vector and assigns to the variable b.

linLS.decomposeQR(A);

The statement above performs QR factorization of the matrix A.

(Q, R) = linLS.qr()

The statement above assigns the computed Q, and R matrices to the variables Q, and R.

Alternately,

Q = linLS.getQ()

The statement above assigns the computed Q matrix to the variable Q.

R = linLS.getR()

The statement above assigns the computed R matrix to the variable R.

inv = linLS.inverseLS();

The statement above computes the least squares inverse matrix of A and assigns it to the variable

inv.

x = lib_lls.solveLS(b);

The statement above computes the least squares solution corresponding the column b and assigns

it to the variable x.

5.2.4 Eigen

The Eigen class contains methods for computing eigenvalues and eigenvectors of a real or

complex square matrix.

An eigenvector or characteristic vector of a square matrix is a vector that only changes its

magnitude (length), but does not change its direction under the associated linear transformation.

In other words—if x is a vector that is not zero, then it is an eigenvector of a square matrix A if

Ax is a scalar multiple of x. This condition could be written as the equation. An eigenvector is a

nonzero vector that satisfies the equation

𝑨𝒙 = 𝜆𝒙

Where A is an nxn square matrix, scalar is called the eigenvalue of A and x is called the

eigenvector of A corresponding to . Eigenvalues and eigenvectors are also called proper roots

and proper vectors(“eigen” is German for the word “own” or “proper”) or characteristic roots

and characteristic vectors or latent roots and latent vectors. Geometrically, the equation 𝑨𝒙 =

 𝜆𝒙 implies that 𝑨𝒙 𝑎𝑛𝑑 𝒙 are parallel. An eigenvector corresponding to a real, nonzero

eigenvalue points in a direction that is stretched by the transformation and the eigenvalue is the

factor by which it is stretched. If the eigenvalue is negative, the direction is reversed.

Eigenvalues and eigenvectors can be either real or complex. All the functions contained in the

Eigen class are listed in the Appendix B.

Example 1:

eig = import_java_class("library.linear_algebra.Eigen");

The statement above imports the Eigen class and assigns to the pointer eig.

A = |3.0, -0.1, -0.2|,

 |0.1, 7, -0.3|,

 |0.3, -0.2, 10.0|;

The statement above creates a real matrix and assigns to the variable A.

(eigval, eigvec) = lib_eigen.eigen(A);

The statement above computes eigenvalues and eigen vectors of a real matrix A and assigns to

the variables eigval and eigvec respectively.

Example 2:

C = | 1+3i, 2+1i, 3+2i, 1+i |,

 | 3+4i, 1+2i, 2+1i, 4+3i|,

 | 2+3i, 1+5i, 3+1i, 5+2i|,

 | 1+2i, 3+1i, 1+4i, 5+3i|;

The statement above creates a complex matrix and assigns to the variable C.

(eigval, eigvec) = lib_eigen.eigen(C);

The statement above computes eigenvalues and eigen vectors of a complex matrix C and assigns

to the variables eigval and eigvec respectively.

5.2.5 Singular Value

The Singular Value class contains methods to perform singular value decomposition, compute

pseudo inverse, and solve over determined and under determined system of linear equations.

Given a complex matrix A having m rows and n columns, the matrix product U V∗ (* denotes

conjugate transpose) is a singular value decomposition for a given matrix A if

• U and V, respectively, have orthonormal columns.

• has nonnegative elements on its principal diagonal and zeros elsewhere.

• A = U V∗.

Let p and q be the number of rows and columns of . U is m×p, p ≤ m, and V is n×q with q ≤ n.

There are three standard forms of the SVD. All have the ith diagonal value of denoted σi and

ordered as follows: σ1 ≥ σ2 ≥ · · · ≥ σk , and r is the index such that σr > 0 and either k = r or σr+1

= 0.

1. p = m and q = n. The matrix is m × n and has the same dimensions as A.

2. p = q = min{m, n}.The matrix is square.

3. If p = q = r, the matrix is square. This form is called a reduced SVD and denoted by �̂�Σ̂�̂�∗

The three standard forms are graphically illustrated

The first form of the singular value decomposition where m < n.

The second form of the singular value decomposition where m ≥ n.

The second form of the singular value decomposition where m < n.

The first form of the singular value decomposition where m ≥ n.

The third form of the singular value decomposition where r ≤ n ≤ m.

The third form of the singular value decomposition where r ≤ m < n.

In the first standard form of the SVD, U and V are unitary. If A is real, then U and V (in addition

to) can be chosen real in any of the forms of the SVD. The singular value decomposition U

V∗ is not unique. If U V∗ is a singular value decomposition, so is (−U) (−V∗). The singular

values may be arranged in any order if the columns of singular vectors in U and V are reordered

correspondingly. All the functions contained in the Singular Value class are listed in the

Appendix B.

Example:

lib_svd = import_java_class("library.linear_algebra.SingularValue");

The statement above imports the Singular Value class and assigns to the pointer lib_svd.

A1 = |22, 10, 2, 3, 7|,

 |14, 7, 10, 0, 8|,

 |-1, 13, -1, -11, 3|,

 |-3, -2, 13, -2, 4|,

 | 9, 8, 1, -2, 4|,

 | 9, 1, -7, 5, -1|,

 | 2, -6, 6, 5, 1|,

 | 4, 5, 0, -2, 2|;

The statement above creates a real matrix and assigns to the variable A1.

(u,s,v) = lib_svd.svd(A1);

The statement above first factorizes the matrix A1 then assigns the computed U, S, and V

matrices to the variables u, s, and v.

A2 = lib_svd.pseudoinverse();

The statement above computes pseudo inverse of the matrix A1 from the already factorized

matrix u and assigns to the variable A2.

b = [-1, 2, 1, 4, 0, -3, 1, 0];

The statement above creates a real vector and assigns to the variable b.

x = lib_svd.solveSVD(b) ;

The statement above computes the over determined solution of A1 corresponding to the column b

and assigns it to the variable x.

5.3 Zero Min Max

The Zero Min Max library contains methods to find zeros, maxima, and minima of a function.

The Zero Max Min library contains three classes Root Finder, Optimizer, and All. The All class

contains functions from the Root Finder and Optimizer classes.

5.3.1 Root Finder

The objective of a root finder is to compute solutions of the equation

𝑓(𝑥) = 0

Two different methods are available to find roots of a function: Bisection method and Newton

method. All the functions contained in the Root Finder class are listed in the Appendix C.

Example:

rf = import_java_class("library.function_eval.RootFinder")

The statement above imports the Root class and assigns to the pointer rf.

function eqn(real x)

{

 y = x^3+x-1;

 return y;

}

The code fragment above sets up an equation whose root is to be determined.

result = rf.bisection("eqn(real)", 0.0, 1.0, 0.5e-7);

The statement above computes a root using the Bisection method with the bracketing values of

0.0 and 1.0 and a relative precision value of 0.5e-7.

result = rf.newton("eqn(real)", 0.0, 0.5e-7);

The statement above computes a root using the Newton method with the initial guess of 0.0 and a

relative precision value of 0.5e-7.

Alternatively, the same result can be achieved by first setting the root finder method using one of

the following statements:

setBisection();

or

setNewton();

Then setting up an equation using the following statement:

setFunction("eqn(real x)");

Then setting the relative precision using the following statement:

setPrecision(0.5e-7);

After this the multiple attempts to find a root can be made with different bracketing values (for

Bisection method) or initial guesses (for Newton method) using one of the following statements:

bisection(0.0, 1.0);

or

newton(0.0);

5.3.2 Optimizer

An optimization problem can be represented in the following way:

Given: a function f : A R from some set A to the real numbers

Sought: an element x0 in A such that f(x0) ≤ f(x) for all x in A ("minimization") or such

that f(x0) ≥ f(x) for all x in A ("maximization").

optimization problems are usually stated in terms of minimization. Generally, unless both the

objective function and the feasible region are convex in a minimization problem, there may be

several local minima. A local minimum x* is defined as a point for which there exists some δ > 0

so that for all x such that

‖𝑋 − 𝑥∗‖ ≤ 𝛿

the expression

𝑓(𝑥∗) ≤ 𝑓(𝑥)

holds; that is to say, on some region around x* all of the function values are greater than or equal

to the value at that point. Local maxima are defined similarly. Two different optimization

strategies are available: Powell (also known as hill climbing) and Simplex.

All the functions contained in the Optimizer class are listed in the Appendix C.

Example:

opt = import_java_class("library.function_eval.Optimizer")

The statement above imports the Optimizer class and assigns to the pointer opt.

function banana(realVector x)

https://en.wikipedia.org/wiki/Function_%28mathematics%29
https://en.wikipedia.org/wiki/Set_%28mathematics%29
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Feasible_region
https://en.wikipedia.org/wiki/Convex_function

{

 return 100*(x[2] - x[1]*x[1])*(x[2] - x[1]*x[1])

 +(1 - x[1])*(1 - x[1]);

}

The code fragment above defines the Rosenbrock's banana function whose optimum is to be

determined.

result = opt.simplex("banana(realVector x)", [10, -10]);

The statement above computes the optimum of the Rosenbrock's banana function using the

Simplex method. The first parameter is the signature of the function, and the second parameter

is a vector whose elements are the initial values.

 result = opt.powell("banana(realVector x)", [10, -10]);

The statement above computes the optimum of the same function using the Powell (Hill

Climbing) method.

print(result);

The statement above prints the computed values.

Alternately, the same results can be obtained by first setting the optimizer using the following

statement:

opt.setOptimizer("simplex”);

or

opt.setOptimizer("powell”);

Then setting an optimization strategy as:

opt.setStrategy(“max”);

or

opt.setStrategy(“min”);

Then setting the function as:

opt.setFunction("banana(realVector x)");

Then setting the initial values as:

opt.setGuess([10, -10]);

Then computing the optimum values as:

result = opt.optimize();

5.4 Analysis

The Analysis library contains methods to compute definite integrals and derivatives of a function

and solutions of ordinary differential equations. The Analysis library contains four classes:

Differentiator, Integrator, ODE Solver, and All. The All class contains functions from the Root

Finder and Optimizer classes. All the functions contained in the Analysis library are listed in the

Appendix D.

5.4.1 Differentiator

 The definition of a derivative

𝑓′(𝑥) = lim
𝑥→0

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ

Assuming the limit exists; i.e. the function is differentiable. The derivative of a function at x

can be approximated by

𝑓′(𝑥) ≈
𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ

Where h is a very small positive number.

The above formula is called Forward Difference method. The Differentiator class uses a more

accurate formula called the Centered Difference method which is given as:

𝑓′(𝑥) ≈
𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ)

2ℎ

In vector calculus, the Jacobian matrix is the matrix of all first-order partial derivatives of a

vector-valued function. The Jacobian matrix J of f is an m×n matrix, usually defined and

arranged as follows:

𝑱 =
𝑑𝒇

𝑑𝒙
= [

𝜕𝒇

𝜕𝑥1
…

𝜕𝒇

𝜕𝑥𝑛
] =

[

𝜕𝑓1
𝜕𝑥1

⋯
𝜕𝑓1
𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑓𝑚
𝜕𝑥1

⋯
𝜕𝑓𝑚
𝜕𝑥𝑛]

or, component-wise:

𝑱𝑖,𝑗 =
𝜕𝑓𝑖
𝜕𝑥𝑗

The Differentiator class contains functions to compute derivative of a function at a given point,

derivative of a vector with respect to another vector, derivative of a polynomial, and Jacobian

matrix of a system of functions.

All the functions contained in the Differentiator class are listed in the Appendix D.

Example 1:

dif = import_java_class("library.analysis.Differentiator");

The statement above imports the Differentiator class and assigns to the pointer dif.

function func(real x)

{

 return -0.1*x^4 -0.15*x^3 - 0.5*x^2 - 0.25*x + 1.2;

}

The code fragment above defines the function to be differentiated.

result = dif.dydx("func(real x)",0.5, 1e-6);

The statement above computes the derivative of the function at 0.5. The first parameter is the

signature of the function, the second parameter is the value at which the derivative is computed,

and the third parameter is the step size.

print(result);

The statement above prints the computed values.

Example 2:

x = -10:0.25:10;

The statement above creates a vector whose elements range from -10.0 to 10.0 in increments of

0.25 and assigns it to variable x.

y = x1^2;

The statement above creates a vector whose elements are squares of the elements of the vector x

and assigns it to variable y.

dydx = dif.dydx(x, y);

The statement above differentiates vector y with respect to vector x and assigns to variable dydx.

print(dydx);

The statement above print the variable dydx.

Example 3:

poly = #1,2,3#;

The statement above creates the following polynomial:

𝑥2 + 5𝑥 + 3

dpoly = dif.derivative(poly);

The statement above computes the derivative of the polynomial.

print(dpoly);

The statement above print the following output:

dpoly = 2X + 5

Example 4:

function func2(realVector x)

{

 y = zeros(3);

 y[1] = x[1]*x[1]*x[1] + x[2];

 y[2] = x[2]*10.0 + x[2]*x[1]*x[1];

 y[3] = x[1]*x[2];

 return y;

}

x = [2, 1];

The code fragment above defines a system of functions whose Jacobian matrix is to be computed

at point x = (2,1). The point x is specified using a vector.

jcob = dif.jacobian("func2(realVector x)", x);

The statement above computes the Jacobian matrix at point x and assigns it to a variable jcob.

print(jcob);

The statement above prints the computed Jacobian matrix.

5.4.2 Integration

Given a function f of a real variable x and an interval [a, b] of the real line, the definite integral

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

is defined informally as the signed area of the region in the xy-plane that is bounded by the graph

of f, the x-axis and the vertical lines x = a and x = b. The area above the x-axis adds to the total

and that below the x-axis subtracts from the total.

A double integral is defined as

∬ 𝑔(𝑥, 𝑦)𝑑𝑥𝑑𝑦
Ω

where Ω is a triangle with vertices (𝑥𝑖 , 𝑦𝑖), (𝑥𝑗 , 𝑦𝑗), and (𝑥𝑘, 𝑦𝑘) and 𝑔 is real valued.

There are two types of integrators in the Integrator class: definite integrators and polynomial

integrators. Several integration schemes are available for definite integrators: Simpson, Simpson

Richardson, Romberg, Quadrature, and Tricube. Tricube is a double integrator, and all others

are line integrators.

All the functions contained in the Integrator class are listed in the Appendix D.

Example 1:

integ = import_java_class("library.analysis.Integrator");

The statement above imports the Integrator class and assigns to the pointer integ.

function integrand(real x)

{

 y = (10*exp(-x)*sin(2*PI*x))^2;

 return y;

}

https://en.wikipedia.org/wiki/Function_%28mathematics%29
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Variable_%28mathematics%29
https://en.wikipedia.org/wiki/Interval_%28mathematics%29
https://en.wikipedia.org/wiki/Real_line
https://en.wikipedia.org/wiki/Area_%28geometry%29
https://en.wikipedia.org/wiki/Graph_of_a_function

The code fragment above defines the function to be integrated.

integ.setFunction("integrand(real)");

The statement above sets up the integrand.

result = integ.simpson(0.0, 0.5);

The statement above performs integration from 0.0 to 0.5 using Simpson method and assigns the

integrated value to the variable result.

result = integ.simpsonRichardson (0.0, 0.5);

The statement above performs integration from 0.0 to 0.5 using Simpson Richardson method and

assigns the integrated value to the variable result.

result = integ.romberg (0.0, 0.5);

The statement above performs integration from 0.0 to 0.5 using Romberg method and assigns the

integrated value to the variable result.

result = integ.quadrature (0.0, 0.5);

The statement above performs integration from 0.0 to 0.5 using Quadrature method and assigns

the integrated value to the variable result.

Alternatively, the same results can be achieved by the following statements:

result = integ.simpson("integrand(real)", 0.0, 0.5)

result = integ.simpsonRichardson("integrand(real)", 0.0, 0.5)

result = integ.romberg("integrand(real)", 0.0, 0.5)

result = integ.quadrature("integrand(real)", 0.0, 0.5)

Example 2:

Perform the following integration

∫(𝑥 + 5) 𝑑𝑥

Solution:

poly = #1, 5#;

The statement above creates the following polynomial:

𝑝𝑜𝑙𝑦 = 𝑥 + 5

and assigns the polynomial to the variable poly.

ipoly = integ.integral(poly, 3.0);

The statement above integrates the polynomial, adds a constant value of 3.0 to the integration

and assigns the integrated polynomial to the variable ipoy. The integrated polynomial is

0.5𝑥2 + 5𝑥 + 3

Example 3:

Evaluate the double integral

∬𝑐𝑜𝑠(𝑥)𝑐𝑜𝑠(𝑦)𝑑𝑥𝑑𝑦

Ω

over the triangle Ω in the x-y plane with vertices (0.0), (0.0, 𝜋 2⁄), (𝜋 2⁄ , 𝜋 2⁄).

Solution:

function real_integrand(real x, real y)

{

 y = cos(x)*cos(y);

 return y;

}

The code fragment above defines the function to be double integrated.

integ.setFunction("integrand4(real, real)");

The statement above sets up the real_integrand function for integration.

result = integ.tricub(0.0,0.0, 0.0,PI/2,PI/2,PI/2, 1e-6);

The statement above performs a double integration over the triangle Ω in the x-y plane with

vertices (0.0), (0.0, 𝜋 2⁄), (𝜋 2⁄ , 𝜋 2⁄) within an absolute error value of 1e-6 and assigns the

integrated value to the variable result.

5.4.3 Ordinary Differential Equation

A classical ordinary differential equation (ODE) is a functional relation of the form

𝐹(𝑡, 𝑥, 𝑥(1), ⋯ , 𝑥(𝑘)) = 0

For unknown function 𝑥 ∈ 𝐶𝑘(𝐽), 𝐽 ⊆ ℝ and derivatives

𝑥(𝑗)(𝑡) =
𝑑𝑗(𝑡)

𝑑𝑡𝑗
, 𝑗 ∈ ℕ𝑜

where 𝑡 is the independent variable and 𝑥 the depended variable. The highest derivative

appearing in 𝐹 is called the order of the differential equation. A solution of the ODE is a

function 𝜙 ∈ 𝐶𝑘(𝐼), where 𝐼 ⊆ 𝐽 is an interval such that

𝐹(𝑡, 𝜙(𝑡), 𝜙1(𝑡)⋯𝜙𝑘(𝑡)) = 0 for all 𝑡 ∈ 𝐼

The ODE Solver class contains two solver methods: Euler and Runge Kutta 4.

All the functions contained in ODE Solver class are listed in the Appendix D.

Example:

Solve the following ODE

𝑑2𝑦

𝑑𝑡2
= −32

for the initial condition 𝑦(0) = 0 and
𝑑𝑦

𝑑𝑡
(0) = 100.

Solution:

solver = import_java_class("library.analysis.ODE_Solver")

The statement above imports the Integrator class and assigns to the pointer integ.

function odefcn(real x)

{

 return -32.0;

}

The code fragment above defines the ODE.

ic = [0.0, 100.0];

The statement above sets up the initial condition.

ye = solver.euler("odefcn(real x)", ic, 0.0, 7.0, 0.01);

The statement above solves the ODE for the initial condition from 0.0 to 7.0 with the step size of

0.01 using the Euler method and assigns the solution to the variable ye.

yr = solver.rk4("odefcn(real x)", ic, 0.0, 7.0, 0.01);

The statement above solves the ODE for the initial condition from 0.0 to 7.0 with the step size of

0.01 using the Runge Kutta 4 method and assigns the solution to the variable yr.

5.5 Estimation

The Estimation library contains methods for curve fits and interpolation. The Estimation library

consists of four classes: Interpolator, Linear Regression, Polynomial Least Square, and All. All

the functions in the Estimation library are listed in Appendix E.

5.5.1 Interpolation

Interpolation is a method of constructing new data points within the range of a discrete set of

known data points.

Linear interpolation formula is given by

𝑓1(𝑥) = 𝑓(𝑥0) +
𝑓(𝑥1) − 𝑓(𝑥0)

𝑥1 − 𝑥0
(𝑥 − 𝑥0)

Lagrange interpolation polynomial is given by

𝑃𝑛(𝑥) =∑
∏ (𝑥 − 𝑥𝑗)𝑗≠𝑖

∏ (𝑥𝑖 − 𝑥𝑗)𝑗≠𝑖

𝑛

𝑖=0

𝑦𝑖

Newton interpolation formula is given by

𝑃𝑛(𝑥) = 𝛼0 + (𝑥 − 𝑥0) ∙ [𝛼1 + (𝑥 − 𝑥1) ∙ [⋯ [𝛼𝑛−1 + 𝛼𝑛 ∙ (𝑥 − 𝑥1)]]]

Neville’s algorithm is given by

{

 Δ𝑗,𝑖+𝑗

left (𝑥) =
𝑥𝑖 − 𝑥

𝑥𝑗 − 𝑥𝑖+𝑗+1
[Δ𝑗+1,𝑖
left (𝑥) − Δ𝑗,𝑖

right(𝑥)]

Δ𝑗,𝑖+𝑗
right (𝑥) =

𝑥𝑖+𝑗+1 − 𝑥

𝑥𝑗 − 𝑥𝑖+𝑗+1
[Δ𝑗+1,𝑖
left (𝑥) − Δ𝑗,𝑖

right(𝑥)]

where

{

Δ𝑗,𝑖
left(𝑥) = 𝑃𝑗

𝑖(𝑥) − 𝑃𝑗
𝑖−1(𝑥)

Δ𝑗,𝑖
right(𝑥) = 𝑃𝑗

𝑖(𝑥) − 𝑃𝑗+1
𝑖−1(𝑥)

where

https://en.wikipedia.org/wiki/Discrete_set

𝑃𝑗
𝑖(𝑥) =

(𝑥 − 𝑥𝑖+𝑗)𝑃𝑗
𝑖−1(𝑥) + (𝑥 − 𝑥𝑖+𝑗)𝑃𝑗+1

𝑖−1(𝑥)

𝑥 − 𝑥𝑖+𝑗

The expression for cubic spline is given by

𝑃𝑖(𝑥) = 𝑦𝑖−1𝐴𝑖(𝑥) + 𝑦𝑖𝐵𝑖(𝑥) + 𝑦𝑖−1
′′ 𝐶𝑖(𝑥) + 𝑦𝑖

′′𝐷𝑖(𝑥)

where

{

 𝐴𝑖(𝑥) =

𝑥𝑖 − 𝑥

𝑥𝑖 − 𝑥𝑖−1

𝐵𝑖(𝑥) =
𝑥 − 𝑥𝑖−1
𝑥𝑖 − 𝑥𝑖−1

𝑦𝑖−1
′′ =

𝑑2𝑃(𝑥)

𝑑𝑥2
|
𝑥=𝑥𝑖−1

𝑦𝑖
′′ =

𝑑2𝑃(𝑥)

𝑑𝑥2
|
𝑥=𝑥𝑖

{

 𝐶𝑖(𝑥) =

[𝐴𝑖(𝑥)
2 − 1]

6
(𝑥𝑖 − 𝑥𝑖−1)

2

𝐷𝑖(𝑥) =
[𝐵𝑖(𝑥)

2 − 1]

6
(𝑥𝑖 − 𝑥𝑖−1)

2

𝑑𝑃𝑖(𝑥)

𝑑𝑥
=
𝑑𝑃𝑖+1(𝑥)

𝑑𝑥

The Interpolator class contains Linear, Lagrange, Newton, Neville, and Spline interpolation

methods. All the functions contained in the Interpolator class are listed in Appendix E.

Example 1:

Given:

𝑥 = (1900, 1910, 1920, 1930, 1940, 1950, 1960, 1970, 1980, 1990)

and

𝑦

= (75.995, 91.972, 105.711, 123.203, 131.669, 150.697, 179.323, 203.212, 226.505, 249.633)

find the y value corresponding to 𝑥 = 1975.

Solution:

interpol = import_java_class("library.estimation.Interpolator");

The statement above imports the Interpolator class and assigns to the pointer interpol.

x = 1900.0:10:1990;

The statement above creates a vector whose elements are from 1900 to 1990 in the increments of

10 and assigns the vector to the variable x.

y = [75.995, 91.972, 105.711, 123.203, 131.669, 150.697, 179.323, 203.212,

226.505, 249.633];

The statement above creates a vector with the given data and assigns the vector to the variable y.

 lin = interpol.linear(t,p,1975.0);

The statement above interpolates y for x value of 1975 using Liner interpolation and assigns the

interpolated value to the variable lin.

 sp = interpol.spline(t,p,1975.0);

The statement above interpolates y for x value of 1975 using Spline interpolation and assigns the

interpolated value to the variable sp.

 lag = interpol.lagrange(t,p,1975.0);

The statement above interpolates y for x value of 1975 using Lagrange interpolation and assigns

the interpolated value to the variable lag.

 nwt = interpol.newton(t,p,1975.0);

The statement above interpolates y for x value of 1975 using Newton interpolation and assigns

the interpolated value to the variable nwt.

 nev = interpol.neville(t,p,1975.0);

The statement above interpolates y for x value of 1975 using Neville interpolation and assigns

the interpolated value to the variable nev.

After setting up an interpolator, the interpolator can be repeatedly used to interpolate for

different x values.

Example 2:

For the x and y values from Example 1, compute interpolated values for x = 1945, x = 1963, x =

1978, and x = 1987 using Linear interpolation method.

Solution:

interpol.setLinear(t,p);

The statement above sets up the interpolator to use Linear method.

l_1945 = interpol.interpolate(1945.0);

The statement above interpolates y for x value of 1945 and assigns the interpolated value to the

variable l_1945.

l_1963 = interpol.interpolate(1963.0);

The statement above interpolates y for x value of 1963 and assigns the interpolated value to the

variable l_1963.

l_1978 = interpol.interpolate(1978.0);

The statement above interpolates y for x value of 1978 and assigns the interpolated value to the

variable l_1978.

l_1987 = interpol.interpolate(1987.0);

The statement above interpolates y for x value of 1987 and assigns the interpolated value to the

variable l_1987.

5.5.2 Linear Regression

Regression analysis estimates the conditional expectation of the dependent variable given the

independent variables – that is, the average value of the dependent variable when the

independent variables are fixed. In regression analysis, it is also of interest to characterize the

variation of the dependent variable around the regression function which can be described by a

probability distribution.

The method of least-square fit is a standard approach in regression analysis to the approximate

solution of overdetermined systems, i.e., sets of equations in which there are more equations than

unknowns. The least-square estimation is obtained by minimizing function 𝑠(𝒑) is given as

𝑠(𝒑) =∑
[𝑦 − 𝐹(𝑥, 𝒑)]2

𝜎𝑖
2

𝑁

𝑖=1

with respect to the parameter 𝒑. "Least squares" means that the overall solution minimizes the

sum of the squares of the errors made in the results of every single equation. Parameters of a

functional dependence of the variable 𝑦 are determined from the observable quantities 𝑥.

A linear regression is a least-square fit with a linear function of single variable. Linear

regression attempts to model the relationship between two variables by fitting a linear equation

to observed data. One variable is considered to be an explanatory variable, and the other is

considered to be a dependent variable. A numerical measure of association between two

variables is the correlation coefficient, which is a value between -1 and 1 indicating the strength

of the association of the observed data for the two variables. A linear regression line has an

equation of the form

𝑦 = 𝑎 + 𝑏𝑥

where 𝑥 is the explanatory variable and 𝑦 is the dependent variable. The slope of the line is 𝑏,

and 𝑎 is the intercept (the value of y when x = 0).

All the functions contained in the Least-Square Fit class are listed in Appendix E.

Example:

Fit a straight line to the x and y values in the Table below:

x y

1 0.5

2 2.5

3 2.0

4 4.0

5 3.5

6 6.0

7 5.5

Solution:

lr = import_java_class("library.estimation.LinearRegression");

The statement above imports the Linear Regression class and assigns to the pointer lr.

x1 = 1.0:7.0;

The statement above creates a vector whose elements are from 1.0 to 7.0 with increments of 1.0.

y1 = [0.5, 2.5, 2.0, 4.0, 3.5, 6.0, 5.5];

The statement above creates a vector with the given elements.

p1 = lr.linearRegression(x1, y1);

The statement above computes a polynomial using linear regression and assigns the polynomial

to the variable p1.

r1 = lr.getCorrelationCoefficient();

The statement above computes the correlation coefficient of the linear regression and assigns the

coefficient to the variable r1.

5.5.3 Polynomial Regression

Polynomial regression are statistical methods for estimating an underlying polynomial that

describes observations. In a polynomial fit, the fit function is a polynomial of degree m. The

parameters are numbered starting from zero. The number of free parameters is m+1.

Approximating a function 𝑍(𝑡)with a polynomial

�̂�(𝑡) = ∑ 𝑎𝑖𝑡
𝑖

𝑚+1

𝑖=0

where hat (^) denotes the estimate. Polynomial regression models are usually fit using the

method of least squares.

All the functions contained in the Polynomial Regression class are listed in Appendix E.

Example:

Fit a second-order polynomial to the data in the table below:

x y

0 2.1

1 7.7

2 13.6

3 27.2

4 40.9

5 61.1

Solution:

pr = import_java_class("library.estimation.PolynomialRegression");

The statement above imports the Polynomial Regression class and assigns to the pointer pr.

x1 = 0.0:5.0;

The statement above creates a vector whose elements are from 0.0 to 5.0 with increments of 1.0.

y1 = [2.1, 7.7, 13.6, 27.2, 40.9, 61.1];

The statement above creates a vector with the given elements.

p1 = pr.polynomialLSFit(x1, y1, 2);

The statement above computes the coefficient of a polynomial using the least square method and

assigns the corresponding polynomial to the variable p1.

5.6 Stochastic

The Stochastic library contains methods related to statistics and probability. The Stochastic

library contains the following classes:

1. Histogram

2. Probability Distribution

The Stochastic library is documented in Appendix F.

5.6.1 Statistics

Given a random variable whose values are a set of data points, x1, x2, … , xn, the kth order

moment of the set is defined as

𝑀𝑘 =
1

𝑛
∑𝑥𝑖

2

𝑛

𝑖=1

The moment of the first order is the mean or the average defined as

�̅� = 𝑀1 =
1

𝑛
∑𝑥𝑖

𝑛

𝑖=1

The central moment of kth order is defined by

𝑚𝑘 =
1

𝑛
∑(𝑥𝑖 − �̅�)

𝑘

𝑛

𝑖=1

The variance of a set is defined by

𝑣𝑎𝑟 =
1

𝑛 − 1
∑(𝑥𝑖 − �̅�)

2

𝑛

𝑖=1

The standard deviation is defined by

𝜎 = √𝑣𝑎𝑟 = √
1

𝑛 − 1
∑(𝑥𝑖 − �̅�)2
𝑛

𝑖=1

The skewness is defined by

𝑠𝑘𝑒𝑤 =
1

(𝑛 − 1)(𝑛 − 2)
∑(𝑥𝑖 − �̅�)

3

𝑛

𝑖=1

The kurtosis is defined by

𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
𝑛 + 1

(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)
∑(

𝑥𝑖 − �̅�

𝑠
)
4

−
3(𝑛 − 1)2

(𝑛 − 2)(𝑛 − 3)

𝑛

𝑖=1

5.6.1.1 Histogram:

A mathematical histogram which is a function that counts the number of observations that fall

into each of the disjoint categories (known as bins). To construct a histogram, the first step is to

divide the entire range of values into a series of intervals—and then count how many values fall

into each interval. The bins are usually specified as consecutive, non-overlapping intervals of a

variable. The bins (intervals) must be adjacent, and are usually equal size. A histogram is

defined by three main parameters: 𝑥𝑚𝑖𝑛, the minimum of all values accumulated into the

histogram; 𝑤, the bin width; and 𝑛, the number of bins. The ith bin of a histogram is the interval

[𝑥𝑚𝑖𝑛 + (𝑖 − 1)𝑤, 𝑥𝑚𝑖𝑛 + 𝑖𝑤). The bin contents of a histogram is the number of times a value

falls within each bin interval. The bin width is computed as

𝑤 =
𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

𝑛
,

where 𝑥𝑚𝑎𝑥is the maximum accumulated values.

The Histogram class implements a mathematical histogram. All the functions contained in the

Histogram class are listed in Appendix F.

Example:

Divide the data in the table below into 5 equal length intervals between 140 and 190 cm and

create a histogram.

162 168 177 147

189 171 173 168

178 184 165 173

179 166 168 165

Compute the following attributes from the histogram:

count, bin width, minimum, maximum, average, standard deviation, skewness, and kurtosis.

Solution:

hist = import_java_class("library.stochastic.Histogram");

The statement above imports the Histogram class and assigns it to the pointer hist.

hist.setHistogram(140.0, 190.0, 5);

The above statement sets up the histogram with 5 bins and interval between 140.0 and 190.0.

data = [162, 168, 177, 147, 189, 171, 173, 168, 178, 184, 165, 173, 179,

166, 168, 165];

The above statement creates a vector with the given data and assigns it to the variable data.

hist.processData(data);

The above statement creates a mathematical using the data.

c = hist.count();

The above statement counts the number of data and assigns the result in the variable c.

w = hist.binWidth();

The above statement computes the bin width and assigns the result in the variable w.

min = hist.minimum();

The above statement computes the minimum value of the data and assigns the result in the

variable min.

max = hist.maximum();

The above statement computes the maximum value of the data and assigns the result in the

variable max.

ave = hist.average();

The above statement computes the average value of the data and assigns the result in the variable

ave.

sd = hist.standardDeviation();

The above statement computes the standard deviation of the data and assigns the result in the

variable sd.

skew = hist.skewness();

The above statement computes the skewness of the data and assigns the result in the variable

skew.

k = hist.kurtosis();

The above statement computes the kurtosis of the data and assigns the result in the variable k.

5.6.2 Probability

A probability density function defines the probability of finding a continuous random variable

within an infinitesimal interval. Formally, if X is a continuous random variable, then it has a

probability density function f(x), and therefore its probability of falling into a given interval, say

[a, b] is given by the integral

𝑃𝑟𝑜𝑏[𝑎 ≤ 𝑋 ≤ 𝑏] = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

A continuous cumulative distribution function is defined as

𝐹(𝑥) = 𝜇(−∞, 𝑥] = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

−∞

The moment of kth order for a probability density function 𝑓(𝑥) is defined by

𝑀𝑘 = ∫𝑥
𝑘𝑓(𝑥)𝑑𝑥

The mean or average of the distribution is

𝜇 = 𝑀1 = ∫𝑥𝑓(𝑥)𝑑𝑥

The central moment of the kth order defined by

𝑚𝑘 = ∫(𝑥 − 𝜇)
𝑘𝑓(𝑥)𝑑𝑥

The skewness is defined by

𝑠𝑘𝑒𝑤 =
∫𝑥3𝑓(𝑥)𝑑𝑥

𝜎3

The kurtosis is defined by

𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
∫𝑥4𝑓(𝑥)𝑑𝑥

𝜎4
− 3

5.6.2.1 Probability Distributions

The Stochastic library contains the following probability distributions:

1. Uniform Distribution

2. Triangular Distribution

3. Normal Distribution

4. Log Normal Distribution

5. Student Distribution

6. Gamma Distribution

7. Chi-Squared Distribution

8. Exponential Distribution

9. Laplace Distribution

10. Beta Distribution

11. Fisher Snedecor Distribution

12. Fisher Tippett Distribution

13. Weibull Distribution

14. Cauchy Distribution

15. Histogrammed Distribution

16. All Distribution

5.6.2.2 Uniform Distribution

The continuous uniform distribution or rectangular distribution is a family of symmetric

probability distributions such that for each member of the family, all intervals of the same length

on the distribution's support are equally probable. The support is defined by the two parameters,

a and b, which are its minimum and maximum values.

Properties of the uniform distribution is given in the table below:

Property Value
Notation 𝒰(𝑎, 𝑏)
Parameters −∞ < 𝑎 < 𝑏 < +∞

Support 𝑥 ∈ [𝑎, 𝑏]
Probability density function

{

1

𝑏 − 𝑎
 for 𝑎 ≤ 𝑥 ≤ 𝑏

0 otherwise

Distribution function

{

0 for 𝑥 < 𝑎

𝑥 − 𝑎

𝑏 − 𝑎
 for 𝑎 ≤ 𝑥 < 𝑏

1 for 𝑥 > 𝑏

Mean 1

2
(𝑎 + 𝑏)

Median 1

2
(𝑎 + 𝑏)

Mode Any value in (𝑎, 𝑏)

Variance 1

12
(𝑏 − 𝑎)2

Skewness 0

Kurtosis
−
6

5

Example:

Generate a uniformly distributed random number between -1 and 1.

Solution:

dist = import_java_class("library.stochastic.ProbabilityDistribution");

The statement above imports the Probability Distribution class and assigns it to the pointer dist.

r = dist.uniform(-1.0,1.0);

The above statement computes a random number based on a uniform distribution ranged

between of -1.0 to 1.0 and assigns the random value to the variable r.

Alternatively, the same result can be obtained using the following statements.

dist.setUniform(-1.0, 1.0);

r = dist.random();

5.6.2.3 Triangular Distribution

A triangular distribution is a continuous probability distribution with a probability density

function shaped like a triangle. It is defined by three values: the minimum value a, the maximum

value b,and the peak value c, where 𝑎 < 𝑏 and 𝑎 ≤ 𝑐 ≤ 𝑏.

Properties of the triangular distribution is given in the table below:

Property Value
Parameters 𝑎: 𝑎 ∈ (−∞,+∞)

𝑏: 𝑎 < 𝑏

𝑐: 𝑎 ≤ 𝑐 ≤ 𝑏

Support [𝑎, 𝑏]
Probability density function (PDF)

{

0 for 𝑥 < 𝑎

2(𝑥 − 𝑎)

(𝑏 − 𝑎)(𝑐 − 𝑎)
 for 𝑎 ≤ 𝑥 ≤ 𝑐

2

𝑏 − 𝑎
 for 𝑥 = 𝑐

2(𝑏 − 𝑥)

(𝑏 − 𝑎)(𝑏 − 𝑐)
 for 𝑐 ≤ 𝑥 ≤ 𝑏

0 for 𝑥 > 𝑏

Cumulative Distribution function

(CDF)

{

0 for 𝑥 ≤ 𝑎

(𝑥 − 𝑎)2

(𝑏 − 𝑎)(𝑐 − 𝑎)
 for 𝑎 < 𝑥 ≤ 𝑐

1 −
(𝑏 − 𝑥)2

(𝑏 − 𝑎)(𝑏 − 𝑐)
 for 𝑐 < 𝑥 < 𝑏

2(𝑏 − 𝑥)

(𝑏 − 𝑎)(𝑏 − 𝑐)
 for 𝑐 ≤ 𝑥 ≤ 𝑏

1 for 𝑥 ≥ 𝑏

Mean 𝑎 + 𝑏 + 𝑐

3

Median

{

𝑎 + √

(𝑏 − 𝑎)(𝑐 − 𝑎)

2
 for 𝑐 ≥

𝑎 + 𝑏

2

𝑏 − √
(𝑏 − 𝑎)(𝑐 − 𝑎)

2
 for 𝑐 ≥

𝑎 + 𝑏

2

Mode 𝑐

Variance 𝑎2 + 𝑏2 + 𝑐2 − 𝑎𝑏 − 𝑎𝑐 − 𝑏𝑐

18

Skewness √2(𝑎 + 𝑏 − 2𝑐)(2𝑎 − 𝑏 − 𝑐)(𝑎 − 2𝑏 + 𝑐)

5(𝑎2 + 𝑏2 + 𝑐2 − 𝑎𝑏 − 𝑎𝑐 − 𝑏𝑐)
3
2

Kurtosis −3/5

Example:

Generate a random number using a triangular distribution with minimum value = 1, maximum

value = 8 and peak value = 3.

Solution:

dist = import_java_class("library.stochastic.ProbabilityDistribution");

The statement above imports the Probability Distribution class and assigns it to the pointer dist.

r = dist.triangular(1.0, 8.0, 3.0);

The above statement computes a random number based on a triangular distribution with

minimum value = 1, maximum value = 8 and peak value = 3 and assigns the random value to the

variable r.

Alternatively, the same result can be obtained using the following statements.

dist.setTriangular(1.0, 8.0, 3.0);

r = dist.random();

5.6.2.4 Normal Distribution

The normal distribution is the most important probability distribution. Normal distributions are

symmetric and have bell-shaped density curves with a single peak. Most other distributions tend

towards the normal distribution when some of their parameters become large. In normal

distribution, two quantities must be specified: the mean 𝜇, where the peak of the density occurs,

and the standard deviation 𝜎, which indicates the spread of the bell curve.

All normal density curves satisfy the following property which is often referred to as the

Empirical Rule.

68% of the observations fall within 1 standard deviation of the mean, that is, between 𝜇 − 𝜎 and

𝜇 + 𝜎.

95% of the observations fall within 2 standard deviations of the mean, that is, between 𝜇 − 2𝜎

and 𝜇 + 2𝜎.

99.7% of the observations fall within 3 standard deviations of the mean, that is, between 𝜇 − 3𝜎

and 𝜇 + 3𝜎.

Thus, for a normal distribution, almost all values lie within 3 standard deviations of the mean.

Properties of the normal distribution is given in the table below:

Property Value
Notation 𝒩(𝜇, 𝜎)
Parameters 𝜇 ∈ ℝ

0 < 𝜎2 < +∞

Support 𝑥 ∈ ℝ

Probability density function (PDF) 1

√2𝜋𝜎2
𝑒
(𝑥−𝜇)2

2𝜎2

Cumulative Distribution function

(CDF)

1

2
[1 + erf (

𝑥 − 𝜇

𝜎√2
)]

Mean 𝜇

Median 𝜇

Mode 𝜇

Variance 𝜎2

Skewness 0

Kurtosis 0

Example:

Generate a random number using a normal distribution with mean value = 0, standard deviation

= 0.25.

Solution:

dist = import_java_class("library.stochastic.ProbabilityDistribution");

The statement above imports the Probability Distribution class and assigns it to the pointer dist.

r = dist.normal(0.0, 0.25);

The above statement computes a random number based on a triangular distribution with mean

value = 0, standard deviation = 0.25.

Alternatively, the same result can be obtained using the following statements.

dist.setNormal(0.0, 0.25);

r = dist.random();

5.6.2.5 Log Normal Distribution

A log-normal (or lognormal) distribution is a continuous probability distribution of a random

variable whose logarithm is normally distributed. Thus, if the random variable 𝑋 is log-normally

distributed, then 𝑌 = ln (𝑋) has a normal distribution. Likewise, if 𝑌 has a normal distribution,

then 𝑋 = exp(𝑌) has a log-normal distribution. A random variable which is log-normally

distributed takes only positive real values. The distribution is occasionally referred to as the

Galton distribution or Galton's distribution, after Francis Galton.

A log-normal process is the statistical realization of the multiplicative product of many

independent random variables, each of which is positive. This is justified by considering the

central limit theorem in the log domain. The log-normal distribution is the maximum entropy

probability distribution for a random variate 𝑋 for which the mean and variance of ln (𝑋) are

specified.

Properties of the normal distribution is given in the table below:

Property Value
Notation ln 𝒩(𝜇, 𝜎2)
Parameters 𝜇 ∈ ℝ -- location

0 < 𝜎2 < +∞ -- scale

Support 𝑥 ∈ (0, +∞)
Probability density function (PDF) 1

𝑥𝜎√2𝜋
𝑒
−
(ln 𝑥−𝜇)2

2𝜎2

Cumulative Distribution function

(CDF)

1

2
[1 + erf (

ln 𝑥 − 𝜇

√2𝜎
)]

Mean 𝑒𝜇+𝜎
2 2⁄

Median 𝑒𝜇

Mode 𝑒𝜇−𝜎
2

Variance (𝑒𝜎
2
− 1)𝑒2𝜇+𝜎

2

Skewness (𝑒𝜎
2
+ 2)√𝑒𝜎

2
− 1

Kurtosis 𝑒4𝜎
2
+ 2𝑒3𝜎

2
+ 3𝑒2𝜎

2
− 6

Example:

Example for the normal distribution can be used for the log-normal distribution.

5.6.2.6 Student’s T Distribution

Student's t-distribution (or simply the t-distribution) is any member of a family of continuous

probability distributions that arises when estimating the mean of a normally distributed

population in situations where the sample size is small and population standard deviation is

unknown developed by William Sealy Gosset under the pseudonym Student. Whereas a normal

distribution describes a full population, t-distributions describe samples drawn from a full

population; accordingly, the t-distribution for each sample size is different, and the larger the

sample, the more the distribution resembles a normal distribution.

The t-distribution plays a role in a number of widely used statistical analyses, including the

Student's t-test for assessing the statistical significance of the difference between two sample

means, the construction of confidence intervals for the difference between two population means,

and in linear regression analysis. The Student's t-distribution also arises in the Bayesian analysis

of data from a normal family.

The t-distribution is symmetric and bell-shaped, like the normal distribution, but has heavier

tails, meaning that it is more prone to producing values that fall far from its mean. This makes it

useful for understanding the statistical behavior of certain types of ratios of random quantities, in

which variation in the denominator is amplified and may produce outlying values when the

denominator of the ratio falls close to zero. The Student's t-distribution is a special case of the

generalized hyperbolic distribution.

Properties of the Student's t-distribution distribution is given in the table below:

Property Value
Parameters 𝑛

(a positive integer)

Support (−∞,+∞)
Probability density function (PDF)

1

√𝑛𝐵 (
𝑛
2
,
1
2
)
(1 +

𝑡2

𝑛
)

−
𝑛+1
2

Cumulative Distribution function

(CDF)

{

 1 + 𝐵 (

𝑛
𝑛 + 𝑥2

;
𝑛
2
,
1
2
)

2
 for 𝑥 ≥ 0

1 − 𝐵 (
𝑛

𝑛 + 𝑥2
;
𝑛
2
,
1
2
)

2
 for < 0

Mean 0

Variance 𝑛

𝑛−2
 for 𝑛 > 0

Undefined otherwise

Skewness 0

Kurtosis 6

𝑛−4
 for 𝑛 > 4

Undefined otherwise

Example:

Generate a random number using a student’s t-distribution with degrees-of-freedom = 8.

Solution:

dist = import_java_class("library.stochastic.ProbabilityDistribution");

The statement above imports the Probability Distribution class and assigns it to the pointer dist.

r = dist.student(8.0);

The above statement computes a random number based on a triangular distribution with degrees-

of-freedom = 8.

Alternatively, the same result can be obtained using the following statements.

dist.setStudent(8);

r = dist.random();

5.6.2.7 Gamma Distribution

The gamma distribution is a two-parameter family of continuous probability distributions. The

common exponential distribution and chi-squared distribution are special cases of the gamma

distribution. There are three different parameterizations in common use:

1. With a shape parameter k and a scale parameter θ.

2. With a shape parameter α = k and an inverse scale parameter β = 1/θ, called a rate

parameter.

3. With a shape parameter k and a mean parameter μ = k/β.

In each of these three forms, both parameters are positive real numbers.

Properties of the normal distribution is given in the table below:

Property Value
Parameters 𝑘 > 0 shape 𝛼 > 0 shape

𝜃 > 0 scale 𝛽 > 0 scale

Support 𝑥 ∈ (0, +∞)
Probability density function (PDF) 𝑥𝛼−1

𝛽𝛼Γ(α)
𝑒
−
𝑥
𝛽

Cumulative Distribution function

(CDF)
(
𝑥

𝛽
, 𝛼)

Mean 𝛼𝛽

Variance 𝛼𝛽2

Skewness 2

√𝛼

Kurtosis 6

𝛼

Example:

Generate a random number using a gamma distribution with shape value = 9.56, scale value =

38.94.

https://en.wikipedia.org/wiki/Parametrization

Solution:

dist = import_java_class("library.stochastic.ProbabilityDistribution");

The statement above imports the Probability Distribution class and assigns it to the pointer dist.

r = dist.gamma(9.56, 38.94);

The above statement computes a random number based on a gamma distribution with shape

value = 9.56, scale value = 38.94.

Alternatively, the same result can be obtained using the following statements.

dist.setGamma(9.56, 38.94);

r = dist.random();

5.6.2.8 Chi-Squared Distribution

The chi-squared distribution (also chi-square or χ²-distribution) with k degrees of freedom is

the distribution of a sum of the squares of k independent standard normal random variables. It is

a special case of the gamma distribution.

Properties of the Chi-Squared distribution is given in the table below:

Property Value
Notation 𝜒2(𝑘) or 𝜒𝑘

2

Parameters 𝑘 ∈ ℕ > 0 (known as “degrees-of-

freedom”)

Support 𝑥 ∈ [0, +∞)
Probability density

function (PDF)

1

2
𝑘
2Γ (

𝑘
2
)
𝑥
𝑘
2
−1𝑒−

𝑥
2

Cumulative Distribution

function (CDF)

1

Γ (
𝑘
2
)
𝛾 (
𝑘

2
,
𝑥

2
)

Mean 𝑘

Median
≈ 𝑘 (1 −

2

9𝑘
)
3

Mode max{𝑘 − 2,0}
Variance 2𝑘

Skewness √8 𝑘⁄

Kurtosis 12

𝑘

Example:

Example for the student’s t-distribution can be used for the chi-squared distribution.

5.6.2.9 Exponential Distribution

The exponential distribution (a.k.a. negative exponential distribution) is the probability

distribution that describes the time between events in a Poisson process, i.e. a process in which

events occur continuously and independently at a constant average rate. It is a specific case of

the gamma distribution. It is the continuous analogue of the geometric distribution, and it has the

key property of being memory less.

Properties of the exponential distribution is given in the table below:

Property Value
Notation

Parameters 𝜆 > 0 rate, or inverse scale

Support 𝑥 ∈ [0, +∞)
Probability density

function (PDF)
𝜆𝑒−𝜆𝑥

Cumulative Distribution

function (CDF)
1 − 𝑒−𝜆𝑥

Mean 𝜆−1(= 𝛽)
Median 𝜆−1ln(2)
Mode 0

Variance 6

Skewness √8 𝑘⁄

Kurtosis 12

𝑘

Example:

Generate a random number using an exponential distribution with rate = 0.5.

Solution:

dist = import_java_class("library.stochastic.ProbabilityDistribution");

The statement above imports the Probability Distribution class and assigns it to the pointer dist.

r = dist.exponential(0.5);

The above statement computes a random number based on an exponential distribution with rate =

0.5.

Alternatively, the same result can be obtained using the following statements.

https://en.wikipedia.org/wiki/Memoryless

dist.setExponential(0.5);

r = dist.random();

5.6.2.10 Laplace Distribution

The Laplace distribution is a continuous probability distribution named after Pierre-Simon

Laplace. It is also sometimes called the double exponential distribution, because it can be

thought of as two exponential distributions (with an additional location parameter) spliced

together back-to-back, although the term 'double exponential distribution' is also sometimes used

to refer to the Gumbel distribution. The difference between two independent identically

distributed exponential random variables is governed by a Laplace distribution. Increments of

Laplace motion or a variance gamma process evaluated over the time scale also have a Laplace

distribution.

Properties of the Laplace distribution is given in the table below:

Property Value
Notation

Parameters 𝜇 location (real)

𝑏 > 0 scale (real)

Support 𝑥 ∈ (−∞,+∞)
Probability density

function (PDF)

1

2𝑏
exp (−

|𝑥 − 𝜇|

𝑏
)

Cumulative Distribution

function (CDF)

{

1

2
exp (−

𝑥 − 𝜇

𝑏
) if 𝑥 < 𝜇

1 −
1

2
exp (−

𝑥 − 𝜇

𝑏
) if 𝑥 ≥ 𝜇

Mean 𝜇

Median 𝜇

Mode 𝜇

Variance 2𝑏2

Skewness 0

Kurtosis 3

Example:

Generate a random number using a Laplace distribution with location = 0.0 and scale = 1.0.

Solution:

dist = import_java_class("library.stochastic.ProbabilityDistribution");

The statement above imports the Probability Distribution class and assigns it to the pointer dist.

r = dist.laplace(0.0, 1.0);

The above statement computes a random number based on a Laplace distribution with location =

0.0 and scale = 1.0.

Alternatively, the same result can be obtained using the following statements.

dist.setLaplace(0.0, 1.0);

r = dist.random();

5.6.2.11 Beta Distribution

The Beta distribution is a family of continuous probability distributions defined on the interval

[0, 1] parameterized by two positive shape parameters, denoted by α and β, that appear as

exponents of the random variable and control the shape of the distribution.

Properties of the Beta distribution is given in the table below:

Property Value
Notation 𝐵𝑒𝑡𝑎(𝛼, 𝛽)
Parameters 𝛼 > 0 shape (real)

𝛽 > 0 shape (real)

Support 𝑥 ∈ (0,1)
Probability density function (PDF) 𝑥𝛼−1(1 − 𝑥)𝛽−1

𝐵(𝛼, 𝛽)

Cumulative Distribution function

(CDF)

𝐼𝑥(𝛼, 𝛽)

Mean 𝐸[𝑋] =
𝛼

𝛼 + 𝛽

𝐸[𝑙𝑛𝑋] = 𝜓(𝛼) − 𝜓(𝛼 + 𝛽)
Median 𝐼1

2

[−1](𝛼, 𝛽) (in general)

≈
𝛼 −

1
3

𝛼 + 𝛽 −
2
3

 for 𝛼, 𝛽 > 1

Mode 𝛼 − 1

𝛼 + 𝛽 − 2
 for 𝛼, 𝛽 > 1

Variance
𝑣𝑎𝑟[𝑥] =

𝛼𝛽

(𝛼 + 𝛽)2(𝛼 + 𝛽 + 1)

𝑣𝑎𝑟[𝑙𝑛𝑋] = 𝜓1(𝛼) − 𝜓1(𝛼 + 𝛽)
Skewness 2(𝛽 − 𝛼)√𝛼 + 𝛽 + 2

(𝛼 + 𝛽 + 2)√𝛼𝛽

Kurtosis 6[(𝛼 − 𝛽)2(𝛼 + 𝛽 + 1) − 𝛼𝛽(𝛼 + 𝛽 + 2)]

𝛼𝛽(𝛼 + 𝛽 + 2)(𝛼 + 𝛽 + 3)

https://en.wikipedia.org/wiki/Parametrization

Example:

Generate a random number using a beta distribution with 𝛼 = 2.0 and 𝛽 = 3.0.

Solution:

dist = import_java_class("library.stochastic.ProbabilityDistribution");

The statement above imports the Probability Distribution class and assigns it to the pointer dist.

r = dist.beta(2.0, 3.0);

The above statement computes a random number based on a beta distribution with 𝛼 = 2.0 and

𝛽 = 3.0.

Alternatively, the same result can be obtained using the following statements.

dist.setBeta(2.0, 3.0);

r = dist.random();

5.6.2.12 Fisher-Snedecor Distribution

The Fisher–Snedecor distribution (after Ronald Fisher and George W. Snedecor) , also known

as Snedecor's F distribution or the F-distribution is a continuous probability distribution.

The F-distribution arises frequently as the null distribution of a test statistic, most notably in the

analysis of variance.

Properties of the Fisher–Snedecor distribution is given in the table below:

Property Value
Parameters 𝑛, 𝑑 > 0 deg of freedom

Support [0, +∞)
Probability density

function (PDF) √
(𝑛𝑥)𝑛𝑑𝑑

(𝑛𝑥 + 𝑑)𝑛 + 𝑑

𝑥𝐵 (
𝑛
2
,
𝑑
2
)

Cumulative Distribution

function (CDF)
𝐹(𝑥) = 𝐼 𝑛𝑥

𝑛𝑥+𝑑
(
𝑛

2
,
𝑑

2
)

Mean 𝑑

𝑑−2
 for 𝑑 > 2

Undefined otherwise

Mode 𝑛−2

𝑛

𝑑

𝑑+2
 for 𝑑 > 2

Variance 2𝑑2(𝑛+𝑑−2)

𝑛(𝑑−𝑛)2(𝑑−4)
 for 𝑑 > 4

Undefined otherwise

Skewness (2𝑛+𝑑−2)√8(𝑑−4)

(𝑑−6)√𝑛(𝑛+𝑑−2)
 for 𝑑 > 6

Undefined otherwise

Kurtosis 3 + 12
𝑛(5𝑑−22)(𝑛+𝑑−2)+(𝑑−4)(𝑑−2)2

𝑛(𝑑−6)(𝑑−8)(𝑛+𝑑−2)
 for

𝑑 > 8

Undefined otherwise

Where, 𝐵 is the Beta function defined in terms of Gamma function (Γ) as

𝐵(𝑛, 𝑑) =
Γ(𝑛)Γ(𝑑)

Γ(𝑛 + 𝑑)

Example:

Generate a random number using a Fisher–Snedecor distribution with degrees-of-freedom, n =

10 and degrees-of-freedom, d = 15.

Solution:

dist = import_java_class("library.stochastic.ProbabilityDistribution");

The statement above imports the Probability Distribution class and assigns it to the pointer dist.

r = dist.beta(10, 15);

The above statement computes a random number based on a Fisher–Snedecor distribution with

degrees-of-freedom, n = 10 and degrees-of-freedom, d = 15.

Alternatively, the same result can be obtained using the following statements.

dist.setFisherSnedecor(10, 15);

r = dist.random();

5.6.2.13 Fisher Tippett Distribution

the Fisher–Tippett distribution, named after Ronald Fisher and L. H. C. Tippett, also known as

generalized extreme value (GEV) distribution is a family of continuous probability

distributions developed within extreme value theory to combine the Gumbel, Fréchet and

Weibull families also known as type I, II and III extreme value distributions. By the extreme

value theorem the GEV distribution is the only possible limit distribution of properly normalized

maxima of a sequence of independent and identically distributed random variables.

https://en.wikipedia.org/wiki/Gumbel_distribution
https://en.wikipedia.org/wiki/Fr%C3%A9chet_distribution
https://en.wikipedia.org/wiki/Weibull_distribution

Properties of the Fisher–Tippett distribution is given in the table below:

Property Value
Notation 𝐺𝐸𝑉(𝜇, 𝜎, 𝜉)
Parameters 𝜇 ∈ ℝ -- location,

𝜎 > 0 -- scale,

𝜉 ∈ ℝ -- shape.

Support 𝑥 ∈ [𝜇 − 𝜎 𝜉⁄ , +∞) when 𝜉 > 0

𝑥 ∈ (−∞,+∞) when 𝜉 = 0

𝑥 ∈ (−∞, 𝜇 − 𝜎 𝜉⁄) when 𝜉 < 0

Probability density

function (PDF)

1

𝜎
𝑡(𝑥)𝜉+1𝑒−𝑡(𝑥),

where

𝑡(𝑥) =

{

(1 + (

𝑥 − 𝜇

𝜎
) 𝜉)

−
1
𝜉
 if 𝜉 ≠ 0

𝑒−(𝑥−𝜇) 𝜎⁄ if 𝜉 = 0

Cumulative Distribution

function (CDF)
𝑒−𝑡(𝑥), for 𝑥 ∈ 𝑟𝑎𝑛𝑔𝑒

Mean

{

 𝜇 + 𝜎

Γ(1 − 𝜉) − 1

𝜉
 if 𝜉 ≠ 0, 𝜉 = 1,

𝜇 + 𝜎𝛾 if 𝜉 = 0,

∞ if 𝜉 ≥ 1,

Where 𝛾 is Euler’s constant.

Median

{

 𝜇 + 𝜎
(𝑙𝑛2)−𝜉 − 1

𝜉
 if 𝜉 ≠ 0,

𝜇 − 𝜎𝑙𝑛 𝑙𝑛2 if 𝜉 ≠ 0.

Mode

{

 𝜇 + 𝜎
(1 + 𝜉)−𝜉 − 1

𝜉
 if 𝜉 ≠ 0,

𝜇 if 𝜉 ≠ 0.

Variance

{

𝜎2(𝑔2 − 𝑔1

2) 𝜉2⁄ if 𝜉 ≠ 0, 𝜉 = 1,

𝜎2
𝜋2

6
 if 𝜉 = 0,

∞ if 𝜉 ≥
1

2
.

where 𝑔𝑘 = Γ(1 − 𝑘𝜉)

Skewness

{

𝑔3 − 3𝑔1𝑔2 + 2𝑔1

(𝑔2 − 𝑔1
2)
3
2

 if 𝜉 > 0,

−
𝑔3 − 3𝑔1𝑔2 + 2𝑔1

3

(𝑔2 − 𝑔1
2)
3
2

 if 𝜉 < 0,

12√6𝜁(3)

𝜋3
 if 𝜉 = 0.

where 𝜁(𝑥) is Riemann zeta function

Kurtosis

{

𝑔4 − 4𝑔1𝑔3 + 6𝑔2𝑔1

2 − 3𝑔1
4

(𝑔2 − 𝑔1
2)2

 if 𝜉 ≠ 0, 𝜉 =
1

4
,

12

56
 if 𝜉 = 0,

∞ if 𝜉 ≥
1

4
.

Example:

Generate a random number using a Fisher–Tippett distribution with mean = 0.0 and standard

deviation = 1.0.

Solution:

dist = import_java_class("library.stochastic.ProbabilityDistribution");

The statement above imports the Probability Distribution class and assigns it to the pointer dist.

r = dist.fisherTippett(0.0, 1.0);

The above statement computes a random number based on a Fisher–Tippett distribution with

mean = 0.0 and standard deviation = 1.0.

Alternatively, the same result can be obtained using the following statements.

dist.setFisherTippett(0.0, 1.0);

r = dist.random();

5.6.2.14 Weibull Distribution

the Weibull distribution is a continuous probability distribution. It is named after Swedish

mathematician Waloddi Weibull, who described it in detail in 1951, although it was first

identified by Fréchet (1927) and first applied by Rosin & Rammler (1933) to describe a particle

size distribution.

Properties of the Weibull distribution is given in the table below:

Property Value
Notation

Parameters 𝜆 ∈ (−∞,+∞) -- scale

𝑘 ∈ (−∞,+∞) -- shape

Support 𝑥 ∈ [0, +∞)
Probability density function (PDF)

{

𝑘

𝜆
(
𝑥

𝜆
)
𝑘−1

𝑒−(𝑥 𝜆)⁄ 𝑘
 for 𝑥 ≥ 0

0 for 𝑥 < 0

Cumulative Distribution function

(CDF) {
1 − 𝑒−(𝑥 𝜆)⁄ 𝑘

 for 𝑥 ≥ 0

0 for 𝑥 < 0

Mean 𝜆Γ(1 + 1 𝑘)⁄

Median 𝜆(ln(2))1 𝑘⁄

Mode

{

𝜆 (
𝑘 − 1

𝑘
)

1
𝑘

 for 𝑘 > 1

0 for 𝑘 = 1

Variance
𝜆2 [Γ (1 +

2

𝑘
) − (Γ (1 +

1

𝑘
))

2

]

Skewness Γ(1 + 3 𝑘⁄)𝜆3 − 3𝜇𝜎2 − 𝜇3

𝜎3

Kurtosis

Example:

Generate a random number using a Weibull distribution with shape = 1.0 and scale = 2.0.

Solution:

dist = import_java_class("library.stochastic.ProbabilityDistribution");

The statement above imports the Probability Distribution class and assigns it to the pointer dist.

r = dist.weibull(1.0, 2.0);

The above statement computes a random number based on a Weibull distribution with shape =

1.0 and scale = 2.0.

Alternatively, the same result can be obtained using the following statements.

dist. setWeibull(1.0, 2.0);
r = dist.random();

5.6.2.15 Cauchy Distribution

The Cauchy distribution, named after Augustin Cauchy, is a continuous probability

distribution. It is also known, especially among physicists, as the Lorentz distribution (after

Hendrik Lorentz), Cauchy–Lorentz distribution, Lorentz(ian) function, or Breit–Wigner

distribution. The simplest Cauchy distribution is called the standard Cauchy distribution. It is

the distribution of a random variable that is the ratio of two independent standard normal

variables and has the probability density function.

Properties of the Cauchy distribution is given in the table below:

Property Value
Parameters 𝑥0 location (real)

𝑌 > 0 scale (real)

Support (−∞,+∞)
Probability density

function (PDF)

1

𝜋𝛾 [1 + (
𝑥 − 𝑥0
𝛾

)
2

]

Cumulative Distribution

function (CDF)

1

𝜋
arctan (

𝑥 − 𝑥0
𝛾

) +
1

2

Mean Undefined

Median 𝑥0

Mode 𝑥0

Variance Undefined

Skewness Undefined

Kurtosis Undefined

Example:

Generate a random number using a Cauchy distribution with location = 0.0 and scale = 1.0.

Solution:

dist = import_java_class("library.stochastic.ProbabilityDistribution");

The statement above imports the Probability Distribution class and assigns it to the pointer dist.

r = dist.cauchy(0.0, 1.0);

The above statement computes a random number based on a Cauchy distribution with middle =

0.0 and width = 1.0.

Alternatively, the same result can be obtained using the following statements.

dist. setCauchy(0.0, 1.0);
r = dist.random();

5.6.2.16 Histogrammed Distribution

5.7 Frequency Domain

The Frequency Domain library contains methods that transform time domain data into frequency

domain data and vice versa. The Frequency Domain library contains one class, FFT. The

Frequency Domain library is documented in Appendix G.

5.7.1 FFT

The Fourier transform decomposes a signal (a time domain function) into the frequencies that

make up the signal. The Fourier transform of a function of time itself is a complex-valued

function of frequency, whose absolute value represents the amount of that frequency present in

the original function, and whose complex argument is the phase offset of the basic sinusoid in

that frequency. The Fourier transform is called the frequency domain representation of the

original signal. The equation for Fourier transform is

𝐺(𝑓) = ∫ 𝑔(𝑡)𝑒−𝑖2𝜋𝑓𝑡 𝑑𝑡
∞

−∞

The equation for inverse Fourier transform is

𝑔(𝑡) = ∫ 𝐺(𝑓)𝑒𝑖2𝜋𝑓𝑡 𝑑𝑓
∞

−∞

A fast Fourier transform (FFT) algorithm computes the discrete Fourier transform (DFT) of a

sequence, or its inverse. Fourier analysis converts a signal from its original domain (often time or

space) to a representation in the frequency domain and vice versa. An FFT reduces the number

of operations of computing the DFT from 𝑂(𝑛2) to 𝑂(𝑛 log 𝑛), where 𝑛 is the data size. An FFT

is much faster than DFT at evaluating the DFT definition directly, but produces exactly the same

result.

Let 𝑥0, ⋯ , 𝑥𝑁−1be complex numbers. The DFT is defined by the formula

𝑋𝑘 = ∑ 𝑥𝑛𝑒
−𝑖2𝜋𝑘𝑛

𝑁
 𝑘 = 0,… ,𝑁 − 1

𝑁−1

𝑛=0

All the functions contained in the FFT class are listed in Appendix G.

Example:

Given the signal 𝑥 = cos (
2𝜋𝑛

10
) where 𝑛 = 0, 1, … , 28, 29.

Perform FFT for 30, 64, 128, and 256 samples.

Solution:

fd = import_java_class("library.frequency_domain.FFT");

The statement above imports the FFT class and assigns it to the pointer fd.

X30 = fd.fft(x).magnitude;

The statement above performs FFT for 30 (number of data points in 𝑥) samples and assigns the

output to the variable .

X64 = fd.fft(x, 64).magnitude;

The statement above performs FFT for 30 samples and assigns the output to the variable X64.

X128 = fd.fft(x, 128).magnitude;

The statement above performs FFT for 30 samples and assigns the output to the variable X128.

X256 = fd.fft(x, 256).magnitude;

The statement above performs FFT for 30 samples and assigns the output to the variable X256.

Appendix A -- Library: General Math

A.1 Constants:

Identifier Description Type

E The real value that is closer than any other to e, the base of the natural logarithms. real

PI The real value that is closer than any other to pi, the ratio of the circumference of a circle

to its diameter.
real

A.2 Functions

Call Signature Description Return Type

abs(real a) Returns the absolute value of a real value. real

abs(integer a) Returns the absolute value of a integer value. integer

abs(realVector a) Returns a vector whose elements are the absolute values of

the elements of the input vector a.
realVector

abs(realMatrix a) Returns a matrix whose elements are the absolute values

of the elements of the input matrix a.
realMatrix

acos(real a) Returns the arc cosine of a value; the returned angle is in

the range 0.0 through pi.
real

acos(integer a) Returns the arc cosine of a value; the returned angle is in

the range 0.0 through pi.
real

acos(realVector a) Returns a vector whose elements are the arc cosines of the

elements of the input vector a; the returned angles are in

the range 0.0 through pi.

realVector

acos(realMatrix a) Returns a matrix whose elements are the arc cosines of the

elements of the input matrix a; the returned angles are in

the range 0.0 through pi.

realMatrix

asin(real a) Returns the arc sine of a value; the returned angle is in the

range -pi/2 through pi/2.
real

asin(integer a) Returns the arc sine of a value; the returned angle is in the

range -pi/2 through pi/2.
real

asin(realVector a) Returns a vector whose elements are the arc sines of the

elements of the input vector a; the returned angle is in the

range -pi/2 through pi/2.

realVector

asin(realMatrix a) Returns a matrix whose elements are the arc sines of the

elements of the input matrix a; the returned angle is in the

range -pi/2 through pi/2.

realMatrix

atan(real a) Returns the arc tangent of a value; the returned angle is in

the range -pi/2 through pi/2.
real

atan(integer a) Returns the arc tangent of a value; the returned angle is in

the range -pi/2 through pi/2.
real

atan(realVector a) Returns a vector whose elements are the arc tangents of realVector

http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#acos%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#acos%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#acos%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#acos%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#asin%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#asin%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#asin%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#asin%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#atan%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#atan%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#atan%28double%29

the elements of the input vector a; the returned angle is in

the range -pi/2 through pi/2.

atan(realMatrix a) Returns a matrix whose elements are the arc tangents of

the elements of the input matrix a; the returned angle is in

the range -pi/2 through pi/2.

realMatrix

atan2(integer y,

integer x)
Returns the angle theta from the conversion of rectangular

coordinates (x, y) to polar coordinates (r, theta).
real

atan2(integer y, real x) Returns the angle theta from the conversion of rectangular

coordinates (x, y) to polar coordinates (r, theta).
real

atan2(real y, integer x) Returns the angle theta from the conversion of rectangular

coordinates (x, y) to polar coordinates (r, theta).
real

atan2(real y, real x) Returns the angle theta from the conversion of rectangular

coordinates (x, y) to polar coordinates (r, theta).
real

cbrt(integer a) Returns the cube root of a integer value. real

cbrt(real a) Returns the cube root of a real value. real

ceil(real a) Returns the smallest (closest to negative infinity) real

value that is greater than or equal to the argument and is

equal to a mathematical integer.

real

copySign(real magnitude,

real sign)
Returns the first floating-point argument with the sign of

the second floating-point argument.
real

cos(real a) Returns the trigonometric cosine of an angle. real

cos(integer a) Returns the trigonometric cosine of an angle. real

cos(realVector a) Returns a vector whose elements are the trigonometric

cosines of the elements of the input vector a.
realVector

cos(realMatrix a) Returns a matrix whose elements are the trigonometric

cosines of the elements of the input matrix a.
realMatrix

cosh(integer x) Returns the hyperbolic cosine of a integer value. real

cosh(real x) Returns the hyperbolic cosine of a real value. real

cosh(realVector x) Returns a vector whose elements are the hyperbolic

cosines of the elements of the input vector x.
realVector

cosh(realMatrix x) Returns a matrix whose elements are the hyperbolic

cosines of the elements of the input matrix x.
realMatrix

exp(integer a) Returns Euler's number e raised to the power of a real

value.
real

exp(real a) Returns Euler's number e raised to the power of a real

value.
real

expm1(real x) Returns ex -1. real

floor(real a) Returns the largest (closest to positive infinity) real

value that is less than or equal to the argument and is equal

to a mathematical integer.

real

getExponent(real d) Returns the unbiased exponent used in the representation

of a real.
int

hypot(real x, real y)

Returns sqrt(x2 +y2) without intermediate overflow or

underflow.
real

IEEEremainder(integer f1, Computes the remainder operation on two arguments as real

http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#atan%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#cbrt%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#cbrt%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#ceil%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#copySign%28double,%20double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#cosh%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#cosh%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#cosh%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#cosh%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#exp%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#exp%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#expm1%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#floor%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#getExponent%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#hypot%28double,%20double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#IEEEremainder%28double,%20double%29

integer f2)

prescribed by the IEEE 754 standard.

IEEEremainder(integer f1,

real f2)

Computes the remainder operation on two arguments as

prescribed by the IEEE 754 standard.
real

IEEEremainder(real f1,

integer f2)

Computes the remainder operation on two arguments as

prescribed by the IEEE 754 standard.
real

IEEEremainder(real f1,

real f2)

Computes the remainder operation on two arguments as

prescribed by the IEEE 754 standard.
real

log(integer a)

Returns the natural logarithm (base e) of a integer

value.
real

log(real a)

Returns the natural logarithm (base e) of a real value. real

log(realVector a) Returns the natural logarithm (base e) of a realVector

value.
realVector

log(realMatrix a) Returns the natural logarithm (base e) of a realMatrix

value.
realMatrix

logb(integer a, integer b) Returns the base b logarithm of a integer value. real

logb(integer a, real b) Returns the base b logarithm of a integer value. real

logb(real a, integer b) Returns the base b logarithm of a real value. real

logb(real a, real b) Returns the base b logarithm of a real value. real

logb(realVector a, integer

b)
Returns the base b logarithm of a realVector value. realVector

logb(realVector a, real b) Returns the base b logarithm of a realVector value. realVector

logb(realMatrix a, integer

b)
Returns the base b logarithm of a realMatrix value. realMatrix

logb(realMatrix a, real b) Returns the base b logarithm of a realMatrix value. realMatrix

Log2(integer a) Returns the base 2 logarithm of a integer value. real

log2(real a) Returns the base 2 logarithm of a real value. real

log2(realVector a) Returns the base 2 logarithm of a realVector value. realVector

log2(realMatrix a) Returns the base 2 logarithm of a realMatrix value. realMatrix

log10(integer a) Returns the base 10 logarithm of a integer value. real

log10(real a) Returns the base 10 logarithm of a real value. real

log10(realVector a) Returns the base 10 logarithm of a realVector value. realVector

log10(realMatrix a) Returns the base 10 logarithm of a realMatrix value. realMatrix

log1p(real x)

Returns the natural logarithm of the sum of the argument

and 1.
real

max(integer a, integer b) Returns the greater of two integer values. integer

max(integer a, real b) Returns the greater of two values. real

max(real a, integer b) Returns the greater of two values. real

max(real a, real b) Returns the greater of two real values. real

http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#IEEEremainder%28double,%20double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#IEEEremainder%28double,%20double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#IEEEremainder%28double,%20double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#log%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#log%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#log%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#log%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#log%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#log%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#log%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#log%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#log%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#log%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#log%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#log%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#log10%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#log10%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#log10%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#log10%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#log10%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#log10%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#log10%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#log1p%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#max%28long,%20long%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#max%28double,%20double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#max%28double,%20double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#max%28double,%20double%29

min(integer a, integer b) Returns the smaller of two integer values. integer

min(integer a, real b) Returns the smaller of two values. real

min(real a, integer b) Returns the smaller of two values. real

min(real a, real b) Returns the smaller of two real values. real

nextAfter(real start,

real direction)
Returns the floating-point number adjacent to the first

argument in the direction of the second argument.
real

nextUp(real d) Returns the floating-point value adjacent to d in the

direction of positive infinity.
real

rint(real a) Returns the real value that is closest in value to the

argument and is equal to a mathematical integer.
real

round(real a) Returns the closest integer to the argument, with ties

rounding up.
integer

scalb(real d,

int scaleFactor)
Return d × 2scaleFactor rounded as if performed by a

single correctly rounded floating-point multiply to a

member of the double value set.

real

signum(real d) Returns the signum function of the argument; zero if the

argument is zero, 1.0 if the argument is greater than zero, -

1.0 if the argument is less than zero.

real

sin(real a) Returns the trigonometric sine of an angle. real

sin(integer a) Returns the trigonometric sine of an angle. real

sin(realVector a) Returns a vector whose elements are the trigonometric

sines of the elements of the input vector a.
realVector

sin(realMatrix a) Returns a matrix whose elements are the trigonometric

sines of the elements of the input matrix a.
realMatrix

sinh(integer x) Returns the hyperbolic sine of a integer value. real

sinh(real x) Returns the hyperbolic sine of a real value. real

sinh(realVector x) Returns a vector whose elements are the hyperbolic sines

of the elements of the input vector a.
realVector

sinh(realMatrix x) Returns a matrix whose elements are the hyperbolic sines

of the elements of the input matrix a.
realMatrix

sqrt(integer a) Returns the correctly rounded positive square root of a

integer value.
real

sqrt(real a) Returns the correctly rounded positive square root of a

real value.
real

tan(real a) Returns the trigonometric tangent of an angle. real

tan(integer a) Returns the trigonometric tangent of an angle. real

tan(realVector a) Returns a vector whose elements are the trigonometric

tangents of the elements of the input vector a.
realVector

tan(realMatrix a) Returns a matrix whose elements are the trigonometric

tangents of the elements of the input matrix a.
realMatrix

tanh(integer x) Returns the hyperbolic tangent of a integer value. real

tanh(real x) Returns the hyperbolic tangent of a real value. real

tanh(realVector x) Returns a vector whose elements are the hyperbolic

tangents of the elements of the input vector a.
realVector

http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#min%28long,%20long%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#min%28double,%20double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#min%28double,%20double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#min%28double,%20double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#nextAfter%28double,%20double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#nextUp%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#rint%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#round%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#scalb%28double,%20int%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#signum%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#sin%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#sin%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#sin%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#sin%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#sinh%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#sinh%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#sinh%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#sinh%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#sqrt%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#sqrt%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#tan%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#tan%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#tan%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#tan%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#tanh%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#tanh%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#tanh%28double%29

tanh(real x) Returns a matrix whose elements are the hyperbolic

tangents of the elements of the input matrix a.
realMatrix

toDegrees(integer angrad) Converts an angle measured in radians to an

approximately equivalent angle measured in degrees.
real

toDegrees(real angrad) Converts an angle measured in radians to an

approximately equivalent angle measured in degrees.
real

toRadians(integer angdeg) Converts an angle measured in degrees to an

approximately equivalent angle measured in radians.
real

toRadians(real angdeg) Converts an angle measured in degrees to an

approximately equivalent angle measured in radians.
real

ulp(real d) Returns the size of an ulp of the argument. real

A.2.1 toRadians

Signatures:

toRadians(integer angdeg)

toRadians(real angdeg)

Description:

Converts an angle measured in degrees to an approximately equivalent angle measured in

radians. The conversion from degrees to radians is generally inexact. Argument of type long

converted to a double value.

Parameters:

• angdeg - an angle, in degrees

Returns:

• The measurement of the angle angdeg in radians. The return type is double.

A.2.2 toDegrees

Signature:

toDegrees(integer angrad)

toDegrees(real angrad)

http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#tanh%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#toDegrees%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#toDegrees%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#toRadians%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#toRadians%28double%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#ulp%28double%29

Description:

Converts an angle measured in radians to an approximately equivalent angle measured in

degrees. The conversion from radians to degrees is generally inexact; users should not expect

cos(toRadians(90.0)) to exactly equal 0.0. Argument of type long converted to a double

value.

Parameters:

• angrad - an angle, in radians

Returns:

The measurement of the angle a

A.2.3 sin

Signatures:

sin(integer a)

sin(real a)

sin(realVector a)

sin(realMatrix a)

Description:

Returns the trigonometric sine of an angle.

Special cases:

• If the argument is NaN or an infinity, then the result is NaN.

• If the argument is zero, then the result is a zero with the same sign as the argument.

The computed result must be within 1 ulp of the exact result. Results must be semi-

monotonic. Argument of type long converted to a double value.

Parameters:

• a - an angle, in radians for type long and double.

• a – a vector whose elements are angles, in radians for type vector.

• a – a matrix whose elements are angles, in radians for type matrix.

Returns:

• The sine of the argument, for input type long or double.

• A vector whose elements are the sines of the elements of the vector argument, for the

input type vector.

• A matrix whose elements are the sines of the elements of the matrix argument, for the

input type matrix.

A.2.4 cos

Signatures:

cos(integer a)

cos(real a)

cos(realVector a)

cos(realMatrix a)

Description:

Returns the trigonometric cosine of an angle.

Special cases:

• If the argument is NaN or an infinity, then the result is NaN.

The computed result must be within 1 ulp of the exact result. Results must be semi-

monotonic. Argument of type long converted to a double value.

Parameters:

• a - an angle, in radians for type long and double.

• a – a vector whose elements are angles, in radians for type vector.

• a – a matrix whose elements are angles, in radians for type matrix.

Returns:

• The cosine of the argument, for input type long or double.

• A vector whose elements are the cosines of the elements of the vector argument, for

the input type vector.

• A matrix whose elements are the cosines of the elements of the matrix argument, for

the input type matrix.

A.2.5 tan

Signatures:

tan(integer a)

tan(real a)

tan(realVector a)

tan(realMatrix a)

Description:

Returns the trigonometric tangent of an angle.

Special cases:

• If the argument is NaN or an infinity, then the result is NaN.

• If the argument is zero, then the result is a zero with the same sign as the argument.

The computed result must be within 1 ulp of the exact result. Results must be semi-

monotonic. Argument of type long converted to a double value.

Parameters:

• a - an angle, in radians for type long and double.

• a – a vector whose elements are angles, in radians for type vector.

• a – a matrix whose elements are angles, in radians for type matrix.

Returns:

• The tangent of the argument, for input type long or double.

• A vector whose elements are the tangent of the elements of the vector argument, for

the input type vector.

• A matrix whose elements are the tangent of the elements of the matrix argument, for

the input type matrix.

A.2.6 asin

Signatures:

asin(integer a)

asin(real a)

asin(realVector a)

asin(realMatrix a)

Description:

Returns the arc sine of a value; the returned angle is in the range -pi/2 through pi/2.

Special cases:

• If the argument is NaN or its absolute value is greater than 1, then the result is NaN.

• If the argument is zero, then the result is a zero with the same sign as the argument.

The computed result must be within 1 ulp of the exact result. Results must be semi-

monotonic. Argument of type long converted to a double value.

Parameters:

• a - the value whose arc sine is to be returned, for type long and double.

• a – a vector whose elements are the values whose arc sine is to be returned, for type

vector.

• a – a matrix whose elements are the values whose arc sine is to be returned, for type

matrix.

Returns:

• The arc sine of the argument, for input type long or double.

• A vector whose elements are the arc sine of the elements of the vector argument, for

the input type vector.

• A matrix whose elements are the arc sine of the elements of the matrix argument, for

the input type matrix.

A.2.7 acos

Signatures:

acos(integer a)

acos(real a)

acos(realVector a)

acos(realMatrix a)

Description:

Returns the arc cosine of a value; the returned angle is in the range 0.0 through pi.

Special case:

• If the argument is NaN or its absolute value is greater than 1, then the result is NaN.

The computed result must be within 1 ulp of the exact result. Results must be semi-

monotonic. Argument of type long converted to a double value.

Parameters:

• a - the value whose arc cosine is to be returned, for type long and double.

• a – a vector whose elements are the values whose arc cosine is to be returned, for type

vector.

• a – a matrix whose elements are the values whose arc cosine is to be returned, for

type matrix.

Returns:

• The arc cosine of the argument, for input type long or double.

• A vector whose elements are the arc cosine of the elements of the vector argument,

for the input type vector.

• A matrix whose elements are the arc cosine of the elements of the matrix argument,

for the input type matrix.

A.2.8 atan

Signatures:

atan(integer a)

atan(real a)

atan(realVector a)

atan(realMatrix a)

Description:

Returns the arc tangent of a value; the returned angle is in the range -pi/2 through pi/2.

Special cases:

• If the argument is NaN, then the result is NaN.

• If the argument is zero, then the result is a zero with the same sign as the argument.

The computed result must be within 1 ulp of the exact result. Results must be semi-

monotonic. Argument of type long converted to a double value.

Parameters:

• a - the value whose arc tangent is to be returned, for type long and double.

• a – a vector whose elements are the values whose arc tangent is to be returned, for

type vector.

• a – a matrix whose elements are the values whose arc tangent is to be returned, for

type matrix.

Returns:

• The arc tangent of the argument, for input type long or double.

• A vector whose elements are the arc tangent of the elements of the vector argument, for

the input type vector.

• A matrix whose elements are the arc tangent of the elements of the matrix argument, for

the input type matrix.

A.2.9 atan2

Signatures:

atan2(integer y, integer x)

atan2(integer y, real x)

atan2(real y, integer x)

atan2(real y, real x)

Description:

Returns the angle theta from the conversion of rectangular coordinates (x, y) to polar

coordinates (r, theta). This method computes the phase theta by computing an arc tangent of

y/x in the range of -pi to pi.

Special cases:

• If either argument is NaN, then the result is NaN.

• If the first argument is positive zero and the second argument is positive, or the first

argument is positive and finite and the second argument is positive infinity, then the

result is positive zero.

• If the first argument is negative zero and the second argument is positive, or the first

argument is negative and finite and the second argument is positive infinity, then the

result is negative zero.

• If the first argument is positive zero and the second argument is negative, or the first

argument is positive and finite and the second argument is negative infinity, then the

result is the real value closest to pi.

• If the first argument is negative zero and the second argument is negative, or the first

argument is negative and finite and the second argument is negative infinity, then the

result is the real value closest to -pi.

• If the first argument is positive and the second argument is positive zero or negative zero,

or the first argument is positive infinity and the second argument is finite, then the result

is the real value closest to pi/2.

• If the first argument is negative and the second argument is positive zero or negative

zero, or the first argument is negative infinity and the second argument is finite, then the

result is the real value closest to -pi/2.

• If both arguments are positive infinity, then the result is the real value closest to pi/4.

• If the first argument is positive infinity and the second argument is negative infinity, then

the result is the real value closest to 3*pi/4.

• If the first argument is negative infinity and the second argument is positive infinity, then

the result is the real value closest to -pi/4.

• If both arguments are negative infinity, then the result is the real value closest to -

3*pi/4.

The computed result must be within 2 ulps of the exact result. Results must be semi-monotonic.

Arguments of type long converted to double values.

Parameters:

• y - the ordinate coordinate

• x - the abscissa coordinate

Returns:

• the theta component of the point (r, theta) in polar coordinates that corresponds to the

point (x, y) in Cartesian coordinates. The return type is double.

A.2.10 sinh

Signatures:

sinh(integer x)

sinh(real x)

sinh(realVector x)

sinh(realMatrix x)

Description:

Returns the hyperbolic sine of a real value. The hyperbolic sine of x is defined to be (ex - e-

x)/2 where e is Euler's number.

Special cases:

• If the argument is NaN, then the result is NaN.

• If the argument is infinite, then the result is an infinity with the same sign as the

argument.

• If the argument is zero, then the result is a zero with the same sign as the argument.

The computed result must be within 2.5 ulps of the exact result.

Parameters:

• x - The number whose hyperbolic sine is to be returned for type long and double.

• x – a vector whose elements are the numbers whose hyperbolic sine is to be returned

for type vector.

• x – a matrix whose elements are the numbers whose hyperbolic sine is to be returned

for type matrix.

Returns:

• The hyperbolic sine of x, for input type long or double.

• A vector whose elements are the hyperbolic sine of x of the elements of the vector

argument, for the input type vector.

• A matrix whose elements are the hyperbolic sine of x of the elements of the matrix

argument, for the input type matrix.

A.2.11 cosh

Signatures:

cosh(integer x)

cosh(real x)

cosh(realVector x)

cosh(realMatrix x)

Description:

Returns the hyperbolic cosine of a real value. The hyperbolic cosine of x is defined to be

(ex + e-x)/2 where e is Euler's number.

Special cases:

• If the argument is NaN, then the result is NaN.

• If the argument is infinite, then the result is positive infinity.

• If the argument is zero, then the result is 1.0.

The computed result must be within 2.5 ulps of the exact result.

Parameters:

• x - The number whose hyperbolic cosine is to be returned for type long and double.

• x – a vector whose elements are the numbers whose hyperbolic cosine is to be

returned for type vector.

• x – a matrix whose elements are the numbers whose hyperbolic cosine is to be

returned for type matrix.

Returns:

• The hyperbolic cosine of x , for input type long or double.

• A vector whose elements are the hyperbolic cosine of x of the elements of the vector

argument, for the input type vector.

• A matrix whose elements are the hyperbolic cosine of x of the elements of the matrix

argument, for the input type matrix.

A.2.12 tanh

Signatures:

tanh(integer x)

tanh(real x)

tanh(realVector x)

tanh(realMatrix x)

Description:

Returns the hyperbolic tangent of a real value. The hyperbolic tangent of x is defined to be

(ex - e-x)/(ex + e-x), in other words, sinh(x)/cosh(x). Note that the absolute value of the exact

tanh is always less than 1.

Special cases:

• If the argument is NaN, then the result is NaN.

• If the argument is zero, then the result is a zero with the same sign as the argument.

• If the argument is positive infinity, then the result is +1.0.

• If the argument is negative infinity, then the result is -1.0.

The computed result must be within 2.5 ulps of the exact result. The result of tanh for any

finite input must have an absolute value less than or equal to 1. Note that once the exact

result of tanh is within 1/2 of an ulp of the limit value of ±1, correctly signed ±1.0 should be

returned.

Parameters:

• x - The number whose hyperbolic tangent is to be returned for type long and double.

• x – a vector whose elements are the numbers whose hyperbolic tangent is to be

returned for type vector.

• x – a matrix whose elements are the numbers whose hyperbolic tangent is to be

returned for type matrix.

Returns:

• The hyperbolic tangent of x , for input type long or double.

• A vector whose elements are the hyperbolic tangent of x of the elements of the vector

argument, for the input type vector.

• A matrix whose elements are the hyperbolic tangent of x of the elements of the matrix

argument, for the input type matrix.

• ngrad in degrees. The return type is double.

A.2.13 exp

Signatures:

exp(integer a)

exp(real a)

Description:

Returns Euler's number e raised to the power of a real value.

Special cases:

• If the argument is NaN, the result is NaN.

• If the argument is positive infinity, then the result is positive infinity.

• If the argument is negative infinity, then the result is positive zero.

The computed result must be within 1 ulp of the exact result. Results must be semi-

monotonic. Argument of type long converted to a double value.

Parameters:

• a - the exponent to raise e to.

Returns:

• The value ea, where e is the base of the natural logarithms. The return type is double.

A.2.14 log

Signatures:

log(integer a)

log(real a)

log(realVector a)

log(realMatrix a)

Description:

Returns the natural logarithm (base e) of a long, double, vector, or matrix value.

Special cases:

• If the argument is NaN or less than zero, then the result is NaN.

• If the argument is positive infinity, then the result is positive infinity.

• If the argument is positive zero or negative zero, then the result is negative infinity.

The computed result must be within 1 ulp of the exact result. Results must be semi-

monotonic. Argument of type long converted to a double value.

Parameters:

• a - a value

Returns:

• the value ln a, the natural logarithm of a. The return type is double, vector, or matrix.

A.2.15 logb

Signatures:

logb(integer a, integer b)

logb(integer a, real b)

logb(real a, integer b)

logb(real a, real b)

logb(realVector a, integer b)

logb(realVector a, real b)

logb(realMatrix a, integer b)

logb(realMatrix a, real b)

Description:

Returns the base b logarithm of a long, double, vector, or matrix value.

Special cases:

• If the argument is NaN or less than zero, then the result is NaN.

• If the argument is positive infinity, then the result is positive infinity.

• If the argument is positive zero or negative zero, then the result is negative infinity.

• If the argument is equal to 10n for integer n, then the result is n.

The computed result must be within 1 ulp of the exact result. Results must be semi-

monotonic. Argument of type long converted to a double value.

Parameters:

• a - a value

Returns:

• the base b logarithm of a. The return type is double, vector, or matrix.

A.2.16 log2

Signatures:

log2(integer a)

log2(real a)

log2(realVector a)

log2(realMatrix a)

Description:

Returns the base 10 logarithm of a long, double, vector, or matrix value.

Special cases:

• If the argument is NaN or less than zero, then the result is NaN.

• If the argument is positive infinity, then the result is positive infinity.

• If the argument is positive zero or negative zero, then the result is negative infinity.

• If the argument is equal to 10n for integer n, then the result is n.

The computed result must be within 1 ulp of the exact result. Results must be semi-

monotonic. Argument of type long converted to a double value.

Parameters:

• a - a value

Returns:

• the base 2 logarithm of a. The return type is double, vector, or matrix.

A.2.17 log10

Signatures:

log10(integer a)

log10(real a)

log10(realVector a)

log10(realMatrix a)

Description:

Returns the base 10 logarithm of a real value.

Special cases:

• If the argument is NaN or less than zero, then the result is NaN.

• If the argument is positive infinity, then the result is positive infinity.

• If the argument is positive zero or negative zero, then the result is negative infinity.

• If the argument is equal to 10n for integer n, then the result is n.

The computed result must be within 1 ulp of the exact result. Results must be semi-

monotonic. Argument of type long converted to a double value.

Parameters:

• a - a value

Returns:

• the base 10 logarithm of a. The return type is double, vector, or matrix.

A.2.18 sqrt

Signature:

sqrt(integer a)

sqrt(real a)

Description:

Returns the correctly rounded positive square root of a real value.

Special cases:

• If the argument is NaN or less than zero, then the result is NaN.

• If the argument is positive infinity, then the result is positive infinity.

• If the argument is positive zero or negative zero, then the result is the same as the

argument.

Otherwise, the result is the real value closest to the true mathematical square root of the

argument value. Argument of type long converted to a double value.

Parameters:

• a - a value.

Returns:

• the positive square root of a. If the argument is NaN or less than zero, the result is

NaN. The return type is double.

A.2.19 cbrt

Signature:

cbrt(integer a)

cbrt(real a)

Description:

Returns the cube root of a real value. For positive finite x, cbrt(-x) == -cbrt(x); that is,

the cube root of a negative value is the negative of the cube root of that value's magnitude.

Special cases:

• If the argument is NaN, then the result is NaN.

• If the argument is infinite, then the result is an infinity with the same sign as the

argument.

• If the argument is zero, then the result is a zero with the same sign as the argument.

The computed result must be within 1 ulp of the exact result. Argument of type long

converted to a double value.

Parameters:

• a - a value.

Returns:

• the cube root of a. The return type is double.

A.2.20 IEEEremainder

Signature:

IEEEremainder(integer f1, integer f2)

IEEEremainder(integer f1, real f2)

IEEEremainder(real f1, integer f2)

IEEEremainder(real f1, real f2)

Description:

Computes the remainder operation on two arguments as prescribed by the IEEE 754

standard. The remainder value is mathematically equal to f1 - f2 × n, where n is the

mathematical integer closest to the exact mathematical value of the quotient f1/f2, and if

two mathematical integers are equally close to f1/f2, then n is the integer that is even. If the

remainder is zero, its sign is the same as the sign of the first argument.

Special cases:

• If either argument is NaN, or the first argument is infinite, or the second argument is

positive zero or negative zero, then the result is NaN.

• If the first argument is finite and the second argument is infinite, then the result is the

same as the first argument.

Arguments of type long converted to double values.

Parameters:

• f1 - the dividend.

• f2 - the divisor.

Returns:

• the remainder when f1 is divided by f2. The return type is double.

A.2.21 ceil

Signature:

ceil(real a)

Description:

Returns the smallest (closest to negative infinity) double value that is greater than or equal to

the argument and is equal to a mathematical integer.

Special cases:

• If the argument value is already equal to a mathematical integer, then the result is the

same as the argument.

• If the argument is NaN or an infinity or positive zero or negative zero, then the result is

the same as the argument.

• If the argument value is less than zero but greater than -1.0, then the result is negative

zero.

Note that the value of ceil(x) is exactly the value of -floor(-x).

Parameters:

• a - a value.

Returns:

• the smallest (closest to negative infinity) floating-point value that is greater than or equal

to the argument and is equal to a mathematical integer.

A.2.22 floor

Signature:

floor(real a)

Description:

Returns the largest (closest to positive infinity) real value that is less than or equal to the

argument and is equal to a mathematical integer.

Special cases:

• If the argument value is already equal to a mathematical integer, then the result is the

same as the argument.

• If the argument is NaN or an infinity or positive zero or negative zero, then the result is

the same as the argument.

Parameters:

• a - a value.

Returns:

• the largest (closest to positive infinity) floating-point value that less than or equal to the

argument and is equal to a mathematical integer.

A.2.23 rint

Signature:

rint(real a)

Description:

Returns the real value that is closest in value to the argument and is equal to a mathematical

integer. If two real values that are mathematical integers are equally close, the result is the

integer value that is even.

Special cases:

• If the argument value is already equal to a mathematical integer, then the result is the

same as the argument.

• If the argument is NaN or an infinity or positive zero or negative zero, then the result is

the same as the argument.

Parameters:

• a - a real value.

Returns:

• the closest floating-point value to a that is equal to a mathematical integer.

A.2.24 round

Signature:

round(real a)

Description:

Returns the closest integer to the argument, with ties rounding up.

Special cases:

• If the argument is NaN, the result is 0.

• If the argument is negative infinity or any value less than or equal to the value of the

minimum long value, the result is equal to the value of the minimum long value.

• If the argument is positive infinity or any value greater than or equal to the value of

the maximum long value, the result is equal to the value of the maximum long value.

Parameters:

• a - a floating-point value to be rounded to a integer.

Returns:

• the value of the argument rounded to the nearest integer value.

A.2.25 abs

Signature:

abs(integer a)

abs(real a)

abs(realVector a)

abs(realMatrix a)

Description:

Returns the absolute value of the argument. If the argument is not negative, the argument is

returned. If the argument is negative, the negation of the argument is returned.

Special cases:

• If the argument is positive zero or negative zero, the result is positive zero.

• If the argument is infinite, the result is positive infinity.

• If the argument is NaN, the result is NaN.

Parameters:

• a - the argument whose absolute value is to be determined for type long and double.

• a – a vector whose elements are the values whose absolute values is to be determined

for type vector.

• a – a matrix whose elements are the values whose absolute values is to be determined

for type matrix.

Returns:

• The absolute value of the argument, for input type long or double.

• A vector whose elements are the absolute value of the elements of the vector

argument, for the input type vector.

• A matrix whose elements are the absolute value of the elements of the matrix

argument, for the input type matrix.

A.2.26 max

Signature:

max(integer a, integer b)

max(integer a, real b)

max(real a, integer b)

max(real a, real b)

Description:

Returns the greater of two values. That is, the result is the argument closer to positive

infinity. If the arguments have the same value, the result is that same value. If either value is

NaN, then the result is NaN. Unlike the numerical comparison operators, this method

considers negative zero to be strictly smaller than positive zero. If one argument is positive

zero and the other negative zero, the result is positive zero.

Parameters:

• a - an argument.

• b - another argument.

Returns:

• the larger of a and b. The return type is long if both arguments are of long type.

Otherwise, the return type is double.

A.2.27 min

Signature:

min(integer a, integer b)

min(integer a, real b)

min(real a, integer b)

min(real a, real b)

Description:

Returns the smaller of two values. That is, the result is the value closer to negative infinity. If

the arguments have the same value, the result is that same value. If either value is NaN, then

the result is NaN. Unlike the numerical comparison operators, this method considers negative

zero to be strictly smaller than positive zero. If one argument is positive zero and the other is

negative zero, the result is negative zero.

Parameters:

• a - an argument.

• b - another argument.

Returns:

• the smaller of a and b. The return type is long if both arguments are of long type.

Otherwise, the return type is double.

A.2.28 ulp

Signature:

ulp(real d)

Description:

Returns the size of an ulp of the argument. An ulp of a real value is the positive distance

between this floating-point value and the real value next larger in magnitude. Note that for

non-NaN x, ulp(-x) == ulp(x).

Special Cases:

• If the argument is NaN, then the result is NaN.

• If the argument is positive or negative infinity, then the result is positive infinity.

• If the argument is positive or negative zero, then the result is the minimum double

value.

• If the argument is ±(the maximum double value), then the result is equal to 2971.

Parameters:

• d - the floating-point value whose ulp is to be returned

Returns:

• the size of an ulp of the argument

A.2.29 signum

Signature:

signum(real d)

Description:

Returns the signum function of the argument; zero if the argument is zero, 1.0 if the

argument is greater than zero, -1.0 if the argument is less than zero.

Special Cases:

• If the argument is NaN, then the result is NaN.

• If the argument is positive zero or negative zero, then the result is the same as the

argument.

Parameters:

• d - the floating-point value whose signum is to be returned

Returns:

• the signum function of the argument

A.2.30 hypot

Signature:

hypot(real x, real y)

Description:

Returns sqrt(x2 +y2) without intermediate overflow or underflow.

Special cases:

• If either argument is infinite, then the result is positive infinity.

• If either argument is NaN and neither argument is infinite, then the result is NaN.

The computed result must be within 1 ulp of the exact result. If one parameter is held

constant, the results must be semi-monotonic in the other parameter.

Parameters:

• x - a value

• y - a value

Returns:

• sqrt(x2 +y2) without intermediate overflow or underflow

A.2.31 expm1

Signature:

expm1(real x)

Description:

Returns ex -1. Note that for values of x near 0, the exact sum of expm1(x) + 1 is much closer

to the true result of ex than exp(x).

Special cases:

• If the argument is NaN, the result is NaN.

• If the argument is positive infinity, then the result is positive infinity.

• If the argument is negative infinity, then the result is -1.0.

• If the argument is zero, then the result is a zero with the same sign as the argument.

The computed result must be within 1 ulp of the exact result. Results must be semi-

monotonic. The result of expm1 for any finite input must be greater than or equal to -1.0.

Note that once the exact result of ex - 1 is within 1/2 ulp of the limit value -1, -1.0 should be

returned.

Parameters:

• x - the exponent to raise e to in the computation of ex -1.

Returns:

• the value ex - 1.

A.2.32 log1p

log1p(real x)

Description:

Returns the natural logarithm of the sum of the argument and 1. Note that for small values x,

the result of log1p(x) is much closer to the true result of ln(1 + x) than the floating-point

evaluation of log(1.0+x).

Special cases:

• If the argument is NaN or less than -1, then the result is NaN.

• If the argument is positive infinity, then the result is positive infinity.

• If the argument is negative one, then the result is negative infinity.

• If the argument is zero, then the result is a zero with the same sign as the argument.

The computed result must be within 1 ulp of the exact result. Results must be semi-

monotonic.

Parameters:

• x - a value

Returns:

• the value ln(x + 1), the natural log of x + 1

A.2.33 copySign

Signature:

copySign(real magnitude, real sign)

Description:

Returns the first floating-point argument with the sign of the second floating-point argument.

Note that unlike the StrictMath.copySign method, this method does not require NaN sign

arguments to be treated as positive values; implementations are permitted to treat some NaN

arguments as positive and other NaN arguments as negative to allow greater performance.

Parameters:

• magnitude - the parameter providing the magnitude of the result

• sign - the parameter providing the sign of the result

Returns:

• a value with the magnitude of magnitude and the sign of sign.

A.2.34 getExponent

Signature:

getExponent(real d)

Description:

Returns the unbiased exponent used in the representation of a real. Special cases:

• If the argument is NaN or infinite, then the result is Real.MAX_EXPONENT + 1.

• If the argument is zero or subnormal, then the result is Double.MIN_EXPONENT -1.

Parameters:

• d - a real value

Returns:

• the unbiased exponent of the argument

A.2.35 nextAfter

Signature:

nextAfter(real start, real direction)

Description:

Returns the floating-point number adjacent to the first argument in the direction of the second

argument. If both arguments compare as equal the second argument is returned.

Special cases:

• If either argument is a NaN, then NaN is returned.

• If both arguments are signed zeros, direction is returned unchanged (as implied by the

requirement of returning the second argument if the arguments compare as equal).

• If start is ±(minimum double value) and direction has a value such that the result

should have a smaller magnitude, then a zero with the same sign as start is returned.

• If start is infinite and direction has a value such that the result should have a smaller

magnitude, the maximum double value with the same sign as start is returned.

• If start is equal to ± (the maximum long value) and direction has a value such that the

result should have a larger magnitude, an infinity with same sign as start is returned.

Parameters:

• start - starting floating-point value

• direction - value indicating which of start's neighbors or start should be returned

http://docs.oracle.com/javase/7/docs/api/java/lang/Double.html#MAX_EXPONENT
http://docs.oracle.com/javase/7/docs/api/java/lang/Double.html#MIN_EXPONENT

Returns:

• The floating-point number adjacent to start in the direction of direction.

A.2.36 nextUp

Signature:

nextUp(real d)

Description:

Returns the floating-point value adjacent to d in the direction of positive infinity.

Special Cases:

• If the argument is NaN, the result is NaN.

• If the argument is positive infinity, the result is positive infinity.

• If the argument is zero, the result is the minimum double value

Parameters:

• d - starting floating-point value

Returns:

• The adjacent floating-point value closer to positive infinity.

A.2.37 scalb

Signature:

scalb(real d, int scaleFactor)

Description:

Return d × 2scaleFactor rounded as if performed by a single correctly rounded floating-point

multiply to a member of the double value set. See the Java Language Specification for a

discussion of floating-point value sets.

Special cases:

• If the first argument is NaN, NaN is returned.

• If the first argument is infinite, then an infinity of the same sign is returned.

• If the first argument is zero, then a zero of the same sign is returned.

Parameters:

• d - number to be scaled by a power of two.

• scaleFactor - power of 2 used to scale d

Returns:

• d × 2scaleFactor

Appendix B -- Library: Math2
B.1 Classes

Class Name Class Path

Math2 library.Math2

B.2 Functions

Call Signature Description Return Type

diagonal(integer size, real

value)
Returns a diagonal real matrix of size size x

size and the elements of the diagonal set to

the values of the parameter value.

realMatrix

diagonal(real size, real

value)
Returns a diagonal real matrix of size size x

size and the elements of the diagonal set to

the values of the parameter value.

realMatrix

diagonal(real size, integer

value)
Returns a diagonal real matrix of size size x

size and the elements of the diagonal set to

the values of the parameter value.

realMatrix

diagonal(real size, real

value)
Returns a diagonal real matrix of size size x

size and the elements of the diagonal set to

the values of the parameter value.

realMatrix

divElemByElem(realVector

left, realVector right)
Returns a real vector whose elements are

ratios of the corresponding elements of the

parameters left and right.

realVector

divElemByElem(realMatrix

left, realMatrix right)
Returns a real matrix whose elements are

ratios of the corresponding elements of the

parameters left and right.

realMatrix

identity(integer size) Returns a diagonal real matrix of size size x

size and the elements of the diagonal set to

1.0.

realMatrix

identity(real size) Returns a diagonal real matrix of size size x

size and the elements of the diagonal set to

1.0.

realMatrix

multElemByElem(realVector

left, realVector right)
Returns a real vector whose elements are

products of the corresponding elements of the

parameters left and right.

realVector

multElemByElem(realMatrix

left, realMatrix right)
Returns a real matrix whose elements are

products of the corresponding elements of the

parameters left and right.

realMatrix

ones(integer length) Returns a real vector of length length and

all the elements set to 1.0.
realVector

ones(real length) Returns a real vector of length length and

all the elements set to 1.0.
realVector

ones(integer row, integer

col)
Returns a real matrix of size row x col and

all the elements set to 1.0.
realMatrix

ones(real row, integer col) Returns a real matrix of size row x col and

all the elements set to 1.0.
realMatrix

ones(integer row, real col) Returns a real matrix of size row x col and

all the elements set to 1.0.
realMatrix

ones(real row, real col) Returns a real matrix of size row x col and

all the elements set to 1.0.
realMatrix

transpose(realMatrix a) Returns transpose of a. realMatrix

zeros(integer length) Returns a real vector of length length and

all the elements set to 0.0.
realVector

zeros(real length) Returns a real vector of length length and

all the elements set to 0.0.
realVector

zeros(integer row, integer

col)
Returns a real matrix of size row x col and

all the elements set to 0.0.
realMatrix

zeros(real row, integer col) Returns a real matrix of size row x col and

all the elements set to 0.0.
realMatrix

zeros(integer row, real col) Returns a real matrix of size row x col and

all the elements set to 0.0.
realMatrix

zeros(real row, real col) Returns a real matrix of size row x col and

all the elements set to 0.0.
realMatrix

Appendix C -- Library: Linear Algebra

The Linear Algebra library composed of six classes: All, Utility, Linear Equations class, Linear

Least Square class, Singular Value class, and Eigen class.

C.1 Classes

The table below lists the classes and their paths.

Class Name Class Path

All library.linear_algebra.All

Linear Equations library.linear_algebra.LinearEquations

Linear Least Square library.linear_algebra.LinearLeastSquare

Eigen library.linear_algebra.Eigen

Singular Value library.linear_algebra.SingularValue

C.2 Functions

The table below lists in alphabetical order the functions in the Utility class.

Call Signature Description Return Type

arrayToVec(array ar, boolean

real, boolean imag, boolean

comp)

Returns a real or complex vector produced

from the array input ar. The boolean

parameters real, imag and comp

indicates if the input ar contains real,

imaginary or complex elements.

realVector

or

complexVector

arrayToMat(array ar, boolean

real, boolean comp)
Returns a real or complex matrix produced

from the array input ar. The boolean

parameters real and comp indicates if the

input ar contains real or complex elements.

realMatrix

or

complexMatrix

diagonal(integer size, real

value)
Returns a diagonal real matrix of size size x

size and the elements of the diagonal set to

the values of the parameter value.

realMatrix

diagonal(real size, real

value)
Returns a diagonal real matrix of size size x

size and the elements of the diagonal set to

the values of the parameter value.

realMatrix

diagonal(real size, integer

value)
Returns a diagonal real matrix of size size x

size and the elements of the diagonal set to

the values of the parameter value.

realMatrix

diagonal(real size, real

value)
Returns a diagonal real matrix of size size x

size and the elements of the diagonal set to

the values of the parameter value.

realMatrix

divElemByElem(realVector

left, realVector right)
Returns a real vector whose elements are

ratios of the corresponding elements of the

parameters left and right.

realVector

divElemByElem(realMatrix

left, realMatrix right)
Returns a real matrix whose elements are

ratios of the corresponding elements of the

parameters left and right.

realMatrix

findNonZero(realVector v) Returns an array of long whose elements are

indices of the non-zero elements of the

parameter v.

array

of integers

identity(integer size) Returns a diagonal real matrix of size size x

size and the elements of the diagonal set to

1.0.

realMatrix

identity(real size) Returns a diagonal real matrix of size size x

size and the elements of the diagonal set to

1.0.

realMatrix

isSquare(realMatrix a) Returns TRUE if the matrix in parameter a is

square. Otherwise, returns FALSE.
boolean

isSymmetric(realMatrix a) Returns TRUE if the matrix in parameter a is

symmetric. Otherwise, returns FALSE.
boolean

locate(realVector v, real d) Returns the matched index of the parameter d

in the parameter vector v.
integer

multElemByElem(realVector

left, realVector right)
Returns a real vector whose elements are

products of the corresponding elements of the

parameters left and right.

realVector

multElemByElem(realMatrix Returns a real matrix whose elements are realMatrix

left, realMatrix right) products of the corresponding elements of the

parameters left and right.

ones(integer length) Returns a real vector of length length and

all the elements set to 1.0.
realVector

ones(real length) Returns a real vector of length length and

all the elements set to 1.0.
realVector

ones(integer row, integer

col)
Returns a real matrix of size row x col and

all the elements set to 1.0.
realMatrix

ones(real row, integer col) Returns a real matrix of size row x col and

all the elements set to 1.0.
realMatrix

ones(integer row, real col) Returns a real matrix of size row x col and

all the elements set to 1.0.
realMatrix

ones(real row, real col) Returns a real matrix of size row x col and

all the elements set to 1.0.
realMatrix

transpose(realMatrix a) Returns transpose of a. realMatrix

zeros(integer length) Returns a real vector of length length and

all the elements set to 0.0.
realVector

zeros(real length) Returns a real vector of length length and

all the elements set to 0.0.
realVector

zeros(integer row, integer

col)
Returns a real matrix of size row x col and

all the elements set to 0.0.
realMatrix

zeros(real row, integer col) Returns a real matrix of size row x col and

all the elements set to 0.0.
realMatrix

zeros(integer row, real col) Returns a real matrix of size row x col and

all the elements set to 0.0.
realMatrix

zeros(real row, real col) Returns a real matrix of size row x col and

all the elements set to 0.0.
realMatrix

The table below lists in alphabetical order the functions in the Linear Equations class.

Call Signature Description
Return

Type

decomposeLUP(realMatrix A) Decomposes matrix A using LUP factorization. void

determinant() Returns determinant of a matrix if the matrix is

already been LUP factorized.
real

determinant(realMatrix A) Returns determinant after LUP factorizing matrix

A.
real

inverse() Returns inverse of a matrix if the matrix is

already been LUP factorized.
realMatrix

inverse(realMatrix A) Returns inverse after LUP factorizing matrix A. realMatrix

lower() Returns the lower triangular matrix if the matrix

is already been LUP factorized.
realMatrix

lup() Returns the lower triangular matrix, the upper

triangular matrix, and the permutation matrix if
array

the matrix is already been LUP factorized.

lup(realMatrix A) Returns the lower triangular matrix, the upper

triangular matrix, and the permutation matrix

after LUP factorizing matrix A.

array

permutation() Returns the permutation matrix if the matrix is

already been LUP factorized.
realMatrix

solve(realMatrix A,

realVector b)
Returns the solution vector x of the equation Ax

= b after LUP factorizing matrix A.
realVector

solve(realMatrix A,

realMatrix B)
Returns the solution matrix X of the equation AX

= B after LUP factorizing matrix A.
realMatrix

solve(realVector b) Returns the solution vector x of the equation Ax

= b if the matrix is already been LUP factorized.
realVector

solve(realMatrix B) Returns the solution matrix X of the equation AX

= B if the matrix is already been LUP factorized.
realMatrix

trace() Returns trace of a matrix if the matrix is already

been LUP factorized.
real

trace(realMatrix mat) Returns trace of a matrix after LUP factorizing

matrix A..
real

upper() Returns the upper triangular matrix if the matrix

is already been LUP factorized.
realMatrix

The table below lists in alphabetical order the functions in the Linear Least Square class.

Call Signature Description
Return

Type

decomposeQR(realMatrix A) Decomposes matrix A using QR factorization. void

inverseLS() Returns inverse of a matrix if the matrix is already been

QR factorized.
realMatrix

getAid() Returns the diagonal elements of the upper triangular

matrix produced during factorization.
realVector

getP() Returns P matrix. realMatrix

getQ() Returns Q matrix. realMatrix

getE() Returns R matrix. realMatrix

getMaxEuclidNorm() Returns the maximum of the Euclidean norms of the

columns of the given matrix.
real

getTolerance() Returns the relative tolerance used for calculating

diagonal elements of the upper triangular matrix.
real

inverseLS(realMatrix A) Returns inverse after QR factorizing matrix A. realMatrix

solveLS(realVector b) Returns the solution vector x of the equation Ax = b if

the matrix is already been QR factorized.
realVector

setTolerance(real

tolerance)
 void

solveLS(realMatrix A,

realVector b)
Returns the solution vector x of the equation Ax = b after

QR factorizing matrix A.
realVector

solveLS(realMatrix A,

integer n, realVector b)
Returns the solution vector x of the equation Ax = b after

QR factorizing matrix A with the orthogonal matrix Q of

order n.

realVector

qr() Returns orthogonal matrices QR of a matrix if the matrix

is already been QR factorized.
array

qr(realMatrix A) Returns orthogonal matrices Q, R after factorizing matrix

A.
array

qrE(realMatrix A) Returns orthogonal matrices Q, R after producing an

"economy-size" decomposition matrix A.
array

The table below lists in alphabetical order the functions in the Eigen class.

Call Signature Description Return Type

eigen(realMatrix A)
Returns real or complex eigen values and

corresponding real or complex eigen

vectors of a real nxn matrix A.

array

(of realMatrix

or

complexMatrix)

eigen(complexMatrix A)
Returns real or complex eigen values and

corresponding real or complex eigen

vectors of a complex nxn matrix A.

array

(of realMatrix

or

complexMatrix)

eigenValue() Returns real or complex eigen values

which already been computed by calling

the function eigen(matrix A) or

eigen(complexMatrix A).

realMatrix

or

complexMatrix

eigenReal_vector() Returns real or complex eigen vectors

which already been computed by calling

the function eigen(matrix A) or

eigen(complexMatrix A).

realMatrix

or

complexMatrix

The table below lists in alphabetical order the functions for the Singular Value class.

Call Signature Description Return Type

decomposeSVD(realMatrix A) Decomposes real matrix A using SVD

factorization.
void

decomposeSVD(complexMatrix A) Decomposes complex matrix A using SVD

factorization.
void

getMinNonNegSingularValue() Returns the minimum non-negative

singular value.
real

getU()
Returns an m × m real or complex unitary

matrix U.

realMatrix

or

complexMatrix

getS() Returns an m × n rectangular diagonal

matrix S with non-negative real numbers

realMatrix

or

on the diagonal. complexMatrix

getV()
Returns an n × n real or complex unitary

matrix

realMatrix

or

complexMatrix

pseudoinverse() Returns a pseudo inverse of a real matrix if

the matrix is already been SVD factorized.
realMatrix

pseudoinverse(realMatrix A) Returns a pseudo inverse of a real matrix

after SVD factorizing matrix A.
realMatrix

rank() Returns the rank of a matrix if the matrix is

already been SVD factorized.
integer

rank(realMatrix A) Returns the rank of a real matrix after SVD

factorizing matrix A.
integer

rank(complexMatrix A) Returns the rank of a complex matrix after

SVD factorizing matrix A.
integer

setMinNonNegSingularValue(real

value)
Sets the minimum non-negative singular

value.
void

solvesvd(realVector b) Returns the solution vector x of the

equation Ax = b if the matrix is already

been SVD factorized.

realVector

solvesvd(realMatrix A,

realVector b)
Returns the solution vector x of the

equation Ax = b after SVD factorizing

matrix A.

realVector

svd() Returns an orthogonal m × m real or

complex unitary matrix U, an m × n

rectangular diagonal matrix S with non-

negative real numbers on the diagonal, and

an orthogonal n × m real or complex

unitary matrix V of a matrix if the matrix is

already been SVD factorized.

array

(of realMatrix

or

complexMatrix)

svd(realMatrix A) Returns an orthogonal m × m real matrix

U, an m × n rectangular diagonal matrix S

with non-negative real numbers on the

diagonal, and an orthogonal n × m real

matrix V of a real matrix A after SVD

factorizing matrix A.

array

(of realMatrix

or

complexMatrix)

svd(complexMatrix A) Returns an orthogonal m × m complex

unitary matrix U, diagonal matrix S, and an

orthogonal n × m real or complex unitary

matrix V of a complex matrix A after SVD

factorizing matrix A.

array

(of realMatrix

or

complexMatrix)

Appendix D -- Library: Zero Min Max

The Zero Min Max library contains two classes: RootFinder and Optimization.

D.1 Classes

The table below lists the classes and their paths.

Class Name Class Path

All library.zero_min_max_eval.All

RootFinder library.zero_min_max.RootFinder

Optimizer library.zero_min_max_eval.Optimizer

D.2 Functions

The table below lists in alphabetical order the functions in the Root Finder class.

Call Signature Description Return Type

bisection(String fcnName,

real x1, real x2, real prec,

int maxItarations)

Returns zero crossing of a function using the

Bisection method. Terminates when

maxItarations reached.

real

bisection(String fcnName,

real x1, real x2)
Returns zero crossing of a function using the

Bisection method.
real

bisection(String fcnName,

real x1, real x2, real prec)
Returns zero crossing of a function using the

Bisection method.
real

bisection(real x1, real x2) Returns zero crossing of a function using

Bisection method. Valid after setting root

finding method to Bisection.

real

bisection(real x1, real x2,

real prec)
Returns zero crossing of a function using

Bisection method. Valid after setting root

finding method to Bisection.

real

getIterations() Return number of iterations used to find root. integer

getMaxIterations() Return the maximum number of iterations

will be used to find root.
integer

getPrecision() Returns relative precision used to determine

convergence.
real

newton(String fcnName, real

start, real prec)
Returns zero crossing of a function using the

Newton method.
real

newton(String fcnName, real

start, real prec, int

maxItarations)

Returns zero crossing of a function using the

Newton method. Terminates when

maxItarations reached.

real

newton(String fcnName, real

start)
Returns zero crossing of a function using the

Newton method.
real

newton(real start) Returns zero crossing of a function using the

Newton method. Valid after setting root

finding method to Newton.

real

newton(real start, real prec) Returns zero crossing of a function using the

Newton method. Valid after setting root

finding method to Newton.

real

roots(HYP_PolynomialValue

poly) Returns roots of a polynomial.

realVector

or

complexVector

setMaxIterations(integer

maxItarations)
Sets the maximum number of iterations to be

used.
void

setPrecision(real prec) Sets the relative precision to be used. void

setFunction(String fcnName) Sets the function who’s roots will searched. void

setBisection(String fcnName) Sets the method to be Bisection for a new

function.
void

setBisection() Sets the method to be Bisection for an

existing function.
void

setNewton(String fcnName) Sets the method to be Newton for a new

function.
void

newton(real start) Sets the method to be Newton for an existing

function.
void

The table below lists in alphabetical order the functions in the Optimization class.

Call Signature Description
Return

Type

optimize() Performs optimization. realVector

powell(String fcnName,

realVector guess)
Sets the function to be optimized, sets the initial

guess values and performs optimization using hill

climbing method.

realVector

powell(String fcnName,

realVector guess, integer

maxIter)

Sets the function to be optimized, sets the initial

guess values and performs optimization using hill

climbing method. Terminates when maxIter

reached.

realVector

simplex(String fcnName,

realVector guess)

Sets the function to be optimized, sets the initial

guess values and performs optimization using

Simplex method

realVector

simplex(String fcnName,

realVector guess, integer

maxIter)

Sets the function to be optimized, sets the initial

guess values and performs optimization using

Simplex method. Terminates when maxIter

reached.

realVector

setFunction(String fcnName) Sets function to be optimized. void

setGuess(realVector guess) Sets the initial guess values. void

setOptimizer(String optName) Sets the optimization method. void

setStrategy(String

strategyName)
Sets optimization strategy (minimize or

maximize)
void

Appendix E -- Library: Analysis

The Analysis library can be used to compute numerical derivatives and numerical integral of

functions and to get solutions for ordinary differential equations (ODE). The Analysis library

contains four classes: All, Differentiator, Integrator, and ODE Solver.

E.1 Classes

The table below lists the classes and their paths.

Class Name Class Path

All library.analysis.All

Differentiator library.analysis.Differentiator

Integrator library.analysis.Integrator

HYP_ODE library.analysis.HYP_ODE

ODE_Solver library.analysis.ODE_Solver

E.2 Functions

The table below lists in alphabetical order the functions in the Differentiator class.

Call Signature Description
Return

Type

derivative(polynomial poly) Returns the derivative of a polynomial. polynomial

dydx(String fcnSignature,

real x, real stepSize)
Returns the approximate derivative of a new

function at x.
real

dydx(String fcnSignature,

real x)
Returns the approximate derivative of an existing

function at x.
real

dydx(realVector X, realVector

Y)
Returns an approximate differentiation of Y with

respect to X.
realVector

jacobian(String fcnSignature,

realVector x)
Returns an approximate partial derivative at x. realMatrix

setStepSize(real stepSize) Sets the step size for differentiation or

integration.
void

The table below lists in alphabetical order the functions in the Integrator class.

Call Signature Description
Return

Type

integral(polynomial poly,

real constant)
Returns the integral of a polynomial. polynomial

integral(polynomial poly,

integer constant)
Returns the integral of a polynomial. polynomial

integral(polynomial poly) Returns the integral of a polynomial. polynomial

quadrature(real a, real b) Returns approximate integral of a function from a

to b using Quadrature method.
real

quadrature(String

fcnSignature, real a, real b)
Returns approximate integral of a function from a

to b using Quadrature method.
real

romberg(real a, real b) Returns approximate integral of a function from a

to b using Romberg method.
real

romberg(String fcnSignature,

real a, real b)
Returns approximate integral of a function from a

to b using Romberg method.
real

setFunction(String

fcnSignature)
Sets the integrand function. void

simpson(real a, real b) Returns approximate integral of a function from a

to b using Simpson method.
real

simpson(String fcnSignature,

real a, real b)
Returns approximate integral of a function from a

to b using Simpson method.
real

simpsonRichardson(real a,

real b)
Returns approximate integral of a function from a

to b using Simpson-Richardson method.
real

simpsonRichardson(String

fcnSignature, real a, real b)
Returns approximate integral of a function from a

to b using Simpson-Richardson method.
real

trapeze(double from, double

to)
Returns approximate integral of a function from

from to to using Simpson-Richardson method.
real

trapeze(String fcnSignature,

double from, double to)
Returns approximate integral of a function from

from to to using Simpson-Richardson method.
real

tricub(real xi, real yi, real

xj, real yj, real xk, real

yk, real acc)

Returns approximate definite double integral of a

function over the triangular domain with vertices

(xi,yi), (xj,yj), and (xk,yk) using Tricube

method.

real

tricub(String fcnSignature,

real xi, real yi, real xj,

real yj, real xk, real yk,

real acc)

Returns approximate definite double integral of a

function over the triangular domain with vertices

(xi,yi), (xj,yj), and (xk,yk) using Tricube

method.

real

The table below lists in alphabetical order the functions in the HYP_ODE class.

Call Signature Description Return

Type

setDiffFcn(String

odeSignature)
Sets up the differential equation function. void

computeDerivative() Computes derivative for ODE real

The table below lists in alphabetical order the functions in the ODE Solver class.

Call Signature Description
Return

Type

euler(String odeSignature,

real start, real stop, real

stepSize, realVector

initVec)

Returns solution of an ordinary differential

equation.
realMatrix

setStepSize(real stepSize) Sets the step size for differentiation or

integration.
void

Appendix F -- Library: Estimation

The Estimation library can be used to compute interpolation, polynomial least square fit, and

linear regression. The Estimation library contains four classes: All, Interpolator,

PolynomialLeastSquare, and LinearRegression.

F.1 Classes

The table below lists the libraries and their class paths.

Class Name Class Path

All library.estimation.All

Interpolator library.estimation.Interpolator

Linear Regression library.estimation.LinearRegression

Polynomial

Regression
library.estimation.PolynomialRegression

F.2 Functions

The All class contains functions of the other three classes in the Estimation library. When more

than one class have functions of the same name, the function names are modified in the All class.

The table below list these name changes.

All Polynomial Regression Linear Regression
getErrorMatrix() getPolyErrorMAtrix() getErrorMatrix()

The table below lists in alphabetical order the functions in the Interpolator class.

Call Signature Description
Return

Type

interpolate(real a) Returns interpolated value corresponding to a,

for independent vector x, dependent vector y, and

the interpolator already been set.

real

lagrange(realVector x,

realVector y, real a)
Returns interpolated value corresponding to a, for

independent vector x and dependent vector y,

using Lagrange Interpolator.

real

linear(realVector x,

realVector y, real a)
Returns interpolated value corresponding to a, for

independent vector x and dependent vector y,

using Linear Interpolator.

real

linear(realVector x,

realVector y, real a, integer

index)

Returns interpolated value corresponding to a, for

independent vector x and dependent vector y,

using Linear Interpolator and pre-computed index

real

for the independent vector.

neville(realVector x,

realVector y, real a)
Returns interpolated value corresponding to a, for

independent vector x and dependent vector y,

using Neville Interpolator.

real

newton(realVector x,

realVector y, real number)
Returns interpolated value corresponding to a, for

independent vector x and dependent vector y,

using Newton Interpolator.

real

resetCoefficients() If the interpolator is set to Newton Interpolator,

Resets coefficients.
void

setLagrange(realVector x,

realVector y)

Sets to interpolator to the Lagrange Interpolator

for vector x and vector y.
void

setLinear(realVector x,

realVector y)

Sets to interpolator to the Linear Interpolator for

vector x and vector y.
void

setNeville(realVector x,

realVector y)
Sets to interpolator to the Neville Interpolator for

vector x and vector y.
void

setNewton(realVector x,

realVector y)
Sets to interpolator to the Newton Interpolator for

vector x and vector y.
void

setSpline(realVector x,

realVector y)
Sets to interpolator to the Spline Interpolator for

vector x and vector y.
void

spline(realVector x,

realVector y, real a)
Returns interpolated value corresponding to a, for

independent vector x and dependent vector y,

using Spline Interpolator.

real

spline (realVector x,

realMatrix y, real a)
Returns 2-dimensional interpolated value

corresponding to a, for independent vector x and

dependent matrix y, using Spline Interpolator.

real

valueAndError(real a) If the interpolator is set to Neville Interpolator,

returns the interpolated value and error

corresponding to a,for independent vector x and

dependent vector y already been set.

realVector

The table below lists in alphabetical order the functions in the Linear Regression class.

Call Signature Description
Return

Type

getCorrelationCoefficient() Returns correlation coefficient. real

getErrorMatrix() Returns error matrix. realMatrix

getIntercept() Returns intercept value. real

getPolynomial() Returns polynomial polynomial

getSlope() Returns slope value. real

linearRegression(realVector

vecX, Real_vector vecY)
Returns a polynomial corresponding to

independent vector x and dependent vector y,

estimated using Linear Regression.

polynomial

The table below lists in alphabetical order the functions in the Polynomial Regression class.

Call Signature Description
Return

Type

getErrorMatrix() Returns error matrix. realMatrix

polynomialLSFit (realVector

vecX, realVector vecY,

integer n)
Returns least square estimated polynomial. polynomial

polyError(real x) Return error value. real

Appendix G -- Library: Stochastic

The Stochastic library can be used for probability and statistical computations. Stochastic library

contains sixteen classes.

G.1 Classes

The table below lists the classes in the Stochastic library and their paths.

Class Name Class Path

Histogram library.stochastic.Histogram

BetaDistribution library.stochastic.BetaDistribution

CauchyDistribution library.stochastic.CauchyDistribution

ChiSquareDistribution library.stochastic.ChiSquareDistribution

ExponentialDistribution library.stochastic.ExponentialDistribution

FisherSnedecorDistribution library.stochastic.FisherSnedecorDistribution

FisherTippettDistribution library.stochastic.FisherTippettDistribution

GammaDistribution library.stochastic.GammaDistribution

HistogrammedDistribution library.stochastic.HistogrammedDistribution

LaplaceDistribution library.stochastic.LaplaceDistribution

LogNormalDistribution library.stochastic.LogNormalDistribution

NormalDistribution library.stochastic.NormalDistribution

ProbabilityDistribution library.stochastic.ProbabilityDistribution

StudentDistribution library.stochastic.StudentDistribution

TriangularDistribution library.stochastic.TriangularDistribution

UniformDistribution library.stochastic.UniformDistribution

WeibullDistribution library.stochastic.WeibullDistribution

G.2 Functions

The table below lists in alphabetical order the functions for the Histogram class.

Call Signature Description Return Type

average() real

average(realVector vec) real

binContent(real x) real

binIndex(real x) integer

binParameters(real x) realVector

binWidth() real

count() integer

countsBetween(real x, real y) real

countsUpto(real x) real

dimension() real

errorOnAverage() real

kurtosis() real

maximum() real

minimum() real

overflow() integer

processData(realVector vec) void

range() realVector

reset() void

setGrowthAllowed() void

setIntegerBinWidth() void

size() integer

skewness() real

standardDeviation() real

totalCount() integer

underflow() integer

variance() real

xValueAt(integer index) real

yValueAt(integer index) real

The table below lists in alphabetical order the functions common to all the probability

distributions.

Call Signature Description Return Type

approximateValueAndGradient(

real x)
Returns an approximation of the gradient. realVector

average() Returns the average of the distribution. real

distributionName() Returns the name of the distribution. String

distributionValue(real x) Returns the probability of finding a random

variable smaller than or equal to x.
real

distributionValue(real x1,

real x2)
Returns the probability of finding a random

variable between x1 and x2.
real

eval(real x) Returns probability density function real

inverseDistributionValue

(real x)
Returns the value for which the distribution

function is equal to x.
real

kurtosis() Returns kurtosis of the distribution. real

parameters() Returns parameters for the selected distribution. realVector

random() Returns a random number according to the set real

distribution.

random(integer l) Returns real vector of length l whose elements

are random numbers according to the set

distribution.

realVector

random(real l) Returns real vector of length l whose elements

are random numbers according to the set

distribution.

realVector

random(integer m, integer n) Returns real matrix of size mxn whose elements

are random numbers according to the set

distribution.

realMatrix

random(integer m, real n) Returns real matrix of size mxn whose elements

are random numbers according to the set

distribution.

realMatrix

random(real m, integer n) Returns real matrix of size mxn whose elements

are random numbers according to the set

distribution.

realMatrix

random(real m, real n) Returns real matrix of size mxn whose elements

are random numbers according to the set

distribution.

realMatrix

setHistogram(Histogram

histo)
Sets the parameters of the distribution

according from the histogram histo.
void

setParameters(realVector

params)
Sets the parameters of the distribution

according to params.
void

setSeed(integer seed) Sets the seed of the random number generator. void

skewness()

Returns skewness for the distribution. real

standardDeviation() Returns standards deviation of the distribution

from variance.
real

valueAndGradient(real x) Returns the value and the gradient of the

distribution with respect to the parameters.
realVector

variance() Returns the variance of the distribution. real

The table below lists in alphabetical order the functions pertinent to the Cauchy distribution.

Call Signature Description
Return

Type

setCenter(real center) Sets center value for Cauchy

Distribution. Valid for Cauchy

Distribution only.

void

setWidth(real width) Sets beta value for Cauchy Distribution.

Valid for Cauchy Distribution only.
void

The table below lists in alphabetical order the functions for the Chi-Squared distribution.

Call Signature Description
Return

Type

confidenceLevel(real x) Set the confidence level to x. Only valid for Chi

Square, Fisher Snedecor, and Student

distributions.

real

setDegreesOfFreedom(int n) Valid only for Chi Square Distribution. void

The table below lists in alphabetical order the functions pertinent to the Fisher Snedecor

distribution.

Call Signature Description
Return

Type

defineParameters (integer n1,

integer n2)
Define parameters for FisherSnedecor

distribution.
void

confidenceLevel(real x) Set the confidence level to x. Only valid for Chi

Square, Fisher Snedecor, and Student

distributions.

real

The table below lists in alphabetical order the functions pertinent to the Fisher Tippett

distribution.

Call Signature Description
Return

Type

defineParameters(real center,

real scale)
Define parameters for Fisher Tippett

distribution.
void

The table below lists in alphabetical order the functions pertinent to the Gamma distribution.

Call Signature Description
Return

Type

defineParameters(real shape,

real scale)
Define parameters for Gamma distribution. void

The table below lists in alphabetical order the functions pertinent to the Laplace distribution.

Call Signature Description
Return

Type

defineParameters(real center,

real scale)
Define parameters for Laplace distribution. void

The table below lists in alphabetical order the functions pertinent to the Normal distribution.

Call Signature Description
Return

Type

errorFunction(real x) Returns error function for the Normal

distribution.
real

eval(real x) Returns probability density function real

evalNormal(real x) Returns the density function for a (0,1) Normal

distribution evaluated at x.
real

setAverage(real average) Set the average value for the Normal

Distribution. Valid only for the Normal

Distribution.

void

setParameters(realVector params) Set parameters void

setStandardDeviation(real

standardDeviation)
Set the standard deviation value for the Normal

Distribution. Valid only for the Normal

Distribution.

void

The table below lists in alphabetical order the functions pertinent to the Student distribution.

Call Signature Description
Return

Type

confidenceLevel(real x) Set the confidence level to x. Only valid for Chi

Square, Fisher Snedecor, and Student

distributions.

real

defineParameters(integer n) Define parameters for Student distribution. void

eval(real x) Returns probability density function real

The table below lists in alphabetical order the functions pertinent to the Uniform distribution.

Call Signature Description
Return

Type

eval(real x) Returns probability density function real

setLimits(real low, real high) Sets the lower and upper limits for the Uniform

distribution.
void

The table below lists in alphabetical order the functions pertinent to the Weibull distribution.

Call Signature Description
Return

Type

defineParameters(real shape,

real scale)
Define parameters for Weibull

distribution.
void

The Probability Distribution class combines all the separate distributions in one single class.

Any of the distributions can be used from the Probability Distribution class. The Probability

Distribution class contains all the methods listed in the previous tables plus some extra functions.

The table below lists in alphabetical order the functions special to the Probability Distribution

class.

Call Signature Description
Return

Type

average() Returns average value real

beta(real shape1, real shape2) Returns a random number according to Beta

Distribution with shape1 set to shape1 and

shape2 set to shape2.

real

cauchy(double location, double

scale)
Returns a random number according to

Cauchy distribution.
real

chiSquare(integer dof) Returns a random number according to Chi

Square Distribution with degrees-of-freedom

set to dof.

real

confidenceLevel(real x) Return confidence level real

defineParameters(double

shapeOrCenter, double scale)
Defines parameters for Gamma, Fisher

Tippett, or Laplace distribution.
void

defineParameters(integer n) Defines parameter for Student distribution void

defineParameters(integer n1,

integer n2)
Defines parameter for Fisher Snedecor

distribution
void

 distributionName() Returns name of the distribution string

 distributionValue(real x) Returns the value of the distribution. real

 distributionValue(real x1, real

x2)
Returns the difference between the values of

the distribution due to x1 and x2.
real

 eval(real x) Evaluates Uniform, Gamma, or Student

distribution for the value of x
real

exponential(real rate) Returns a random number according to

Exponential Distribution with rate set rate.
real

fisherSnedecor(integer dof1,

integer dof2)
Returns a random number according to Fisher

Snedecor Distribution with the first degrees-

of-freedom set to dof1 and the second

degrees-of-freedom set to dof2.

real

fisherTippett(real center, real

scale)
Returns a random number according to Fisher

Tippett Distribution with the center set to

center and the scale set to scale.

real

gamma(real shape1, real scale) Returns a random number according to

Gamma Distribution with the shape1 set to

shape1 and the scale set to scale.

real

inverseDistributionValue(real x) Returns the inverse value real

kurtosis() Return kurtosis. real

laplace(real center, real scale) Returns a random number according to

Laplace Distribution with the center set to

center and the scale set to scale.

real

logNormal() Returns a random number according to Log

Normal Distribution with mean set to 0.0 and

standard deviation set to 1.0.

real

logNormal(real mean, real

stdDev)
Returns a random number according to Log

Normal Distribution with mean set to mean

and standard deviation set to stdDev.

real

Normal() Returns a random number according to

Normal Distribution with mean set to 0.0 and

standard deviation set to 1.0

real

normal(real mean, real stdDev) Returns a random number according to

Normal Distribution with mean set to mean

and standard deviation set to stdDev.

real

parameters() Returns the parameters of the distribution. realVector

random() Returns a random value for the distribution

that has already been set.
real

setAverage(real average) Sets average for ormal distribution. void

setBeta(real shape1, real

shape2)
Sets the distribution to Beta Distribution with

shape1 set to shape1 and shape2 set to

shape2.

void

setBeta(Histogram histo) Sets the distribution to Beta Distribution from

a histogram.
void

setCauchy(real center, real

width)
Sets the distribution to Cauchy Distribution

with center set to center and scale set to

scale.

void

setCauchy(Histogram histo) Sets the distribution to Cauchy Distribution

from a histogram.
void

setCenter(real center) Sets center for the Cauchy Distribution. void

setChiSquare(Histogram histo) Sets the distribution to Chi Square

Distribution from a histogram.
void

setChiSquare(integer dof) Sets the distribution to Chi Square

Distribution with degrees-of-freedom set to

dof.

void

setDegreesOfFreedom(integer n) Sets degrees-of-freedom for Chi Square

Distribution
void

setExponential(real rate) Sets the distribution to Exponent Distribution void

with rate set to rate.

setExponential(Histogram histo) Sets the distribution to Exponent Distribution

from a histogram.
void

setFisherSnedecor(Histogram

histo)
Sets the distribution to Fisher Snedecor

Distribution from a histogram.
void

setFisherSnedecor(integer dof1,

integer dof2)
Sets the distribution to Fisher Snedecor

Distribution with the first degrees-of-freedom

set to dof1 and the second degrees-of-

freedom set to dof2.

void

setFisherTippett(real center,

real scale)
Sets the distribution to Fisher Tippett

Distribution with center set to center and

scale set to scale.

void

setFisherTippett(Histogram

histo)
Sets the distribution to Fisher Tippett

Distribution from a histogram.
void

setGamma(real shape1, real

scale)
Sets the distribution to Gamma Distribution

with shape set to shape1 and scale set to

scale.

void

setGamma(Histogram histo) Sets the distribution to Gamma Distribution

from a histogram.
void

setHistogram(Histogram histo) Sets histogram for the distribution void

setLaplace(real center, real

scale)
Sets the distribution to Laplace Distribution

with center set to center and scale set to

scale.

void

setLaplace(Histogram histo) Sets the distribution to Laplace Distribution

from a histogram.
void

setLogNormal() Sets the distribution to Log Normal

Distribution with mean set to 0.0 and

standard deviation set to 1.0.

void

setLogNormal(real mean, real

stdDev)
Sets the distribution to Log Normal

Distribution with mean set to mean and

standard deviation set to stdDev.

void

setLogNormal(real mean, real

stdDev)
Sets the distribution to Log Normal

Distribution from a histogram.
void

setNormal(Histogram histo) Sets the distribution to Normal Distribution

with mean set to 0.0 and standard deviation

set to 1.0.

void

setNormal(real mean, real

stdDev)
Sets the distribution to Normal Distribution

with mean set to mean and standard

deviation set to stdDev.

void

setNormal(Histogram histo) Sets the distribution to Normal Distribution

from a histogram.
void

setParameters(realVector params) Sets parameters for the distribution void

setSeed(integer seed) Sets seed for the distribution. void

setStandardDeviation(real

standardDeviation)
Sets standard deviation for the Normal

distribution
void

setStudent(Histogram histo) Sets the distribution to Student Distribution void

from a histogram.

setStudent(integer dof) Sets the distribution to Student Distribution

with degrees-of-freedom set to dof.
void

setTriangular(real low, real

high, real peak)
Sets the distribution to Triangular

Distribution with the low set to low, high

set to high and the peak set to peak.

void

setTriangular(Histogram histo) Sets the distribution to Triangular

Distribution from a histogram.
void

setUniform()

Sets the distribution to Uniform Distribution.

Generated random numbers will be between -

1.0 and 1.0.

void

setUniform(real a, real b) Sets the distribution to Uniform Distribution

with lower and upper limits of the generated

random number set to a and b.

void

setUniform(Histogram histo) Sets the distribution to Uniform Distribution

from a histogram.
void

setWeibull(real shape1, real

scale)
Sets the distribution to Weibull Distribution

with shape set to shape1 and scale set to

scale.

void

setWeibull(Histogram histo) Sets the distribution to Weibull Distribution

from a histogram.
void

setWidth(real width) Set width to Cauchy Distribution void

skewness() Return skewness. real

standardDeviation() Return standard deviation, real

student(int dof) Returns a random number according to

Student Distribution with degrees-of-freedom

set to dof.

real

triangular(real low, real high,

real peak)
Returns a random number according to

Triangular Distribution with the low set to

low, high set to high and the peak set to
peak.

real

uniform() Returns a random number according to

Uniform Distribution with the range set to

between -1.0 and 1.0.

real

uniform(real a, real b) Returns a random number according to

Uniform Distribution with the with range set

to between a and b.

real

valueAndGradient(double x) Returns value and gradient from the

distribution..
realVector

variance() Returns variance from the distribution. real

weibull(real shape1, real scale) Returns a random number according to

Weibull Distribution with the shape1 set to

shape1 and the scale set to scale.

real

Appendix H -- Library: Frequency Domain

The Frequency Domain library contains one class, FFT.

H.1 Classes

The table below lists the classes and their paths.

Class Name Class Path

FFT library.frequency_domain.FFT

H.2 Functions

The table below lists in alphabetical order the functions in the FFT class.

Call Signature Description Return Type

fft(realVector real) Returns a complex vector whose elements have

been Fourier transformed from a real vector. The

length of the output vector is the same as the

length of the input vector.

complexVector

fft(table real) Returns a complex vector whose elements have

been Fourier transformed from a real vector. The

length of the output vector is the same as the

length of the input vector.

complexVector

fft(realVector real,

realVector imag)
Returns a complex vector whose elements have

been transformed from a complex vector whose

real and imaginary parts are given in real and

imag. The length of the output vector is the same

as the length of the input vector.

complexVector

fft(complexVector vec) Returns a complex vector whose elements have

been transformed from a complex vector. The

length of the output vector is the same as the

length of the input vector.

complexVector

fft (table real, table

imag)
Returns a complex vector whose elements have

been transformed from a complex vector whose

real and imaginary parts are given in real and

imag. The length of the output vector is the same

as the length of the input vector.

complexVector

fft(realVector real,

integer n)
Returns a complex vector whose elements have

been Fourier transformed for n data points from a

real vector. The length of the output vector is n.

complexVector

fft(table real, integer

n)
Returns a complex vector whose elements have

been Fourier transformed for n data points from a

real vector. The length of the output vector is n.

complexVector

fft(realVector real, Returns a complex vector whose elements have complexVector

realVector imag, integer

n)
been Fourier transformed for n data points from a

complex vector whose real and imaginary parts are

given in real and imag. The length of the

output vector is n.

fft(complexVector vec,

integer n)
Returns a complex vector whose elements have

been Fourier transformed for n data points from a

complex vector. The length of the output vector is

n.

complexVector

fft (table real, table

imag, integer n)
Returns a complex vector whose elements have

been Fourier transformed for n data points from a

complex vector whose real and imaginary parts are

given in real and imag. The length of the

output vector is n.

complexVector

